Abstract

We have developed a simple approach to fabricate wide band gap surface layer for Cu(In,Ga)Se2 (CIGS) thin film. The Cu depleted surface layer was reconstructed by an In-Ga-Se post deposition treatment at different temperatures, which was monitored by a light controlling method. A desirable Cu concentration in surface layer has been achieved after depositing a 80nm thick In-Ga-Se layer at 400°C and the corresponding device performance is remarkably improved compared with device without surface modification. Additionally, the excess Cu2- xSe phase on the surface could also be eliminated by this method in case of high Cu/(In+Ga).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
    [CrossRef]
  2. S. H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys,” J. Appl. Phys. 78(6), 3846–3856 (1995).
    [CrossRef]
  3. A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
    [CrossRef]
  4. U. Rau and M. Turcu, “Role of surface band gap widening in Cu(In,Ga)(Se,S)2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In,Ga)(Se,S)2 heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 763, 335–340 (2003).
  5. M. Turcu, O. Pakma, and U. Rau, “Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se,S)2 heterojunction solar cells,” Appl. Phys. Lett. 80(14), 2598–2600 (2002).
    [CrossRef]
  6. T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
    [CrossRef]
  7. T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
    [CrossRef]
  8. U. P. Singh, W. N. Shafarman, and R. W. Birkmire, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Sol. Energy Mater. Sol. Cells 90(5), 623–630 (2006).
    [CrossRef]
  9. D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor,” Sol. Energy Mater. Sol. Cells 67(1–4), 261–265 (2001).
    [CrossRef]
  10. M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
    [CrossRef]
  11. M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
    [CrossRef]
  12. S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
    [CrossRef]
  13. D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
    [CrossRef]
  14. S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
    [CrossRef]
  15. A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
    [CrossRef]
  16. X. H. Tan, S. L. Ye, B. Fan, K. Tang, and X. Liu, “Effects of Na incorporated at different periods of deposition on Cu(In,Ga)Se2 films,” Appl. Opt. 49(16), 3071–3074 (2010).
    [CrossRef] [PubMed]
  17. U.-C. Boehnke and G. Kühn, “Phase relations in the ternary system Cu-In-Se,” J. Mater. Sci. 22(5), 1635–1641 (1987).
    [CrossRef]
  18. T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films,” Appl. Phys. Lett. 74(17), 2444–2446 (1999).
    [CrossRef]
  19. J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
    [CrossRef]

2010

2009

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

2007

S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
[CrossRef]

2006

U. P. Singh, W. N. Shafarman, and R. W. Birkmire, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Sol. Energy Mater. Sol. Cells 90(5), 623–630 (2006).
[CrossRef]

2003

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

U. Rau and M. Turcu, “Role of surface band gap widening in Cu(In,Ga)(Se,S)2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In,Ga)(Se,S)2 heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 763, 335–340 (2003).

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

2002

M. Turcu, O. Pakma, and U. Rau, “Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se,S)2 heterojunction solar cells,” Appl. Phys. Lett. 80(14), 2598–2600 (2002).
[CrossRef]

2001

D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor,” Sol. Energy Mater. Sol. Cells 67(1–4), 261–265 (2001).
[CrossRef]

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

2000

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
[CrossRef]

1999

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films,” Appl. Phys. Lett. 74(17), 2444–2446 (1999).
[CrossRef]

1998

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

1997

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

1995

S. H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys,” J. Appl. Phys. 78(6), 3846–3856 (1995).
[CrossRef]

1993

D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
[CrossRef]

1987

U.-C. Boehnke and G. Kühn, “Phase relations in the ternary system Cu-In-Se,” J. Mater. Sci. 22(5), 1635–1641 (1987).
[CrossRef]

AbuShama, J.

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

Al-Jassim, M. M.

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

Birkmire, R. W.

U. P. Singh, W. N. Shafarman, and R. W. Birkmire, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Sol. Energy Mater. Sol. Cells 90(5), 623–630 (2006).
[CrossRef]

Boehnke, U.-C.

U.-C. Boehnke and G. Kühn, “Phase relations in the ternary system Cu-In-Se,” J. Mater. Sci. 22(5), 1635–1641 (1987).
[CrossRef]

Brillson, L. J.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Canava, B.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Cohen, J. D.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Connolly, J. P.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Contreas, M. A.

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

Darga, A.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Djebbour, Z.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Dong, Z.

J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
[CrossRef]

Dullweber, T.

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

Engelhardt, F.

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Etcheberry, A.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Fan, B.

Grunwald, F.

D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
[CrossRef]

Guillemoles, J. F.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Han, S.-H.

S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
[CrossRef]

Hanna, G.

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

Hasoon, F. S.

S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
[CrossRef]

Heath, J. T.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Hermann, A. M.

S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
[CrossRef]

Heske, C.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Jones, K. M.

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

Karg, F.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Kim, S.

J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
[CrossRef]

Kohara, N.

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

Kühn, G.

U.-C. Boehnke and G. Kühn, “Phase relations in the ternary system Cu-In-Se,” J. Mater. Sci. 22(5), 1635–1641 (1987).
[CrossRef]

Kunioka, A.

D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor,” Sol. Energy Mater. Sol. Cells 67(1–4), 261–265 (2001).
[CrossRef]

T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films,” Appl. Phys. Lett. 74(17), 2444–2446 (1999).
[CrossRef]

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

Levi, D. H.

S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
[CrossRef]

Liao, D.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Lincot, D.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Liu, X.

Lohmuller, B.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Matsui, M.

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

Mencaragila, D.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Meyer, Th.

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Migan Dubois, A.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Miyake, H.

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

Morkel, M.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Nakada, T.

D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor,” Sol. Energy Mater. Sol. Cells 67(1–4), 261–265 (2001).
[CrossRef]

T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films,” Appl. Phys. Lett. 74(17), 2444–2446 (1999).
[CrossRef]

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

Nakazawa, H.

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

Negami, T.

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

Nishiwaki, S.

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

Noufi, R.

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

Ohashi, D.

D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor,” Sol. Energy Mater. Sol. Cells 67(1–4), 261–265 (2001).
[CrossRef]

Ohbo, H.

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

Pakma, O.

M. Turcu, O. Pakma, and U. Rau, “Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se,S)2 heterojunction solar cells,” Appl. Phys. Lett. 80(14), 2598–2600 (2002).
[CrossRef]

Parisi, J.

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Park, J. S.

J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
[CrossRef]

Perepezko, J. H.

J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
[CrossRef]

Ramanathan, K.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Rau, U.

U. Rau and M. Turcu, “Role of surface band gap widening in Cu(In,Ga)(Se,S)2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In,Ga)(Se,S)2 heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 763, 335–340 (2003).

M. Turcu, O. Pakma, and U. Rau, “Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se,S)2 heterojunction solar cells,” Appl. Phys. Lett. 80(14), 2598–2600 (2002).
[CrossRef]

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Riedl, W.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Rockett, A.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Romero, M. J.

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

Roussel, O.

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Ruckh, M.

D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
[CrossRef]

Schmid, D.

D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
[CrossRef]

Schmidt, M.

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Schock, H. W.

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
[CrossRef]

Schwartzlander, A.

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

Seifert, O.

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Shafarman, W. N.

U. P. Singh, W. N. Shafarman, and R. W. Birkmire, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Sol. Energy Mater. Sol. Cells 90(5), 623–630 (2006).
[CrossRef]

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Shams-Kolahi, W.

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

Singh, U. P.

U. P. Singh, W. N. Shafarman, and R. W. Birkmire, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Sol. Energy Mater. Sol. Cells 90(5), 623–630 (2006).
[CrossRef]

Strzhemechny, Y. M.

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

Tan, X. H.

Tang, K.

Turcu, M.

U. Rau and M. Turcu, “Role of surface band gap widening in Cu(In,Ga)(Se,S)2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In,Ga)(Se,S)2 heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 763, 335–340 (2003).

M. Turcu, O. Pakma, and U. Rau, “Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se,S)2 heterojunction solar cells,” Appl. Phys. Lett. 80(14), 2598–2600 (2002).
[CrossRef]

Umbach, E.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Wada, T.

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

Watanabe, T.

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

Wei, S. H.

S. H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys,” J. Appl. Phys. 78(6), 3846–3856 (1995).
[CrossRef]

Weinhardt, L.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Yan, Y.

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

Ye, S. L.

Zunger, A.

S. H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys,” J. Appl. Phys. 78(6), 3846–3856 (1995).
[CrossRef]

Zweigart, S.

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films,” Appl. Phys. Lett. 74(17), 2444–2446 (1999).
[CrossRef]

M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, “Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction,” Appl. Phys. Lett. 79(21), 4482–4484 (2001).
[CrossRef]

M. J. Romero, K. M. Jones, J. AbuShama, Y. Yan, M. M. Al-Jassim, and R. Noufi, “Surface-layer band gap widending in Cu(In,Ga)Se2 thin films,” Appl. Phys. Lett. 83(23), 4731–4733 (2003).
[CrossRef]

S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopy evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett. 91(2), 021904 (2007).
[CrossRef]

M. Turcu, O. Pakma, and U. Rau, “Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se,S)2 heterojunction solar cells,” Appl. Phys. Lett. 80(14), 2598–2600 (2002).
[CrossRef]

J. Appl. Phys.

S. H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys,” J. Appl. Phys. 78(6), 3846–3856 (1995).
[CrossRef]

D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73(6), 2902–2909 (1993).
[CrossRef]

J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, “CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction,” J. Appl. Phys. 87(8), 3683–3690 (2000).
[CrossRef]

J. Mater. Sci.

U.-C. Boehnke and G. Kühn, “Phase relations in the ternary system Cu-In-Se,” J. Mater. Sci. 22(5), 1635–1641 (1987).
[CrossRef]

Jpn. J. Appl. Phys.

S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys. 38(Part 1, No. 5A), 2888–2892 (1999).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

U. Rau and M. Turcu, “Role of surface band gap widening in Cu(In,Ga)(Se,S)2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In,Ga)(Se,S)2 heterojunction solar cells,” Mater. Res. Soc. Symp. Proc. 763, 335–340 (2003).

Phys. Lett. A

F. Engelhardt, M. Schmidt, Th. Meyer, O. Seifert, J. Parisi, and U. Rau, “Metastable electrical transport in Cu(In,Ga)Se2 thin films and ZnO/CdS/Cu(In,Ga)Se2 heterostructures,” Phys. Lett. A 245(5), 489–493 (1998).
[CrossRef]

Sol. Energy Mater. Sol. Cells

T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells 49(1–4), 285–290 (1997).
[CrossRef]

U. P. Singh, W. N. Shafarman, and R. W. Birkmire, “Surface sulfurization studies of Cu(InGa)Se2 thin film,” Sol. Energy Mater. Sol. Cells 90(5), 623–630 (2006).
[CrossRef]

D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor,” Sol. Energy Mater. Sol. Cells 67(1–4), 261–265 (2001).
[CrossRef]

Thin Solid Films

T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. A. Contreas, R. Noufi, and H. W. Schock, “Study of the effect of gallium grading in Cu(In,Ga)Se2,” Thin Solid Films 361(1-2), 478–481 (2000).
[CrossRef]

A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan, and W. N. Shafarman, “Near surface defect distributions in Cu(In,Ga)Se2,” Thin Solid Films 431, 301–306 (2003).
[CrossRef]

A. Darga, D. Mencaragila, Z. Djebbour, A. Migan Dubois, J. F. Guillemoles, J. P. Connolly, O. Roussel, D. Lincot, B. Canava, and A. Etcheberry, “Two step wet surface treatment influence on the electronic properties of Cu(In,Ga)Se2 solar cells,” Thin Solid Films 517(7), 2550–2553 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Monitoring curve of IGS layer. (b) The refractive index of IGS material with Ga/(In+Ga)~0.4. (c) cross-sectional SEM image of IGS layer and the thickness measured by SEM is 1.455μm.

Fig. 2
Fig. 2

Cross-sectional SEM images of (a) IGS_0nm, (b) IGS500°C_80nm, (c) IGS400°C_80nm, (d) IGS300°C_80nm, (e) IGS300°C_320nm and (f) surface SEM image of IGS500°C_320nm.

Fig. 3
Fig. 3

SIMS depth profile of IGS_0nm.

Fig. 4
Fig. 4

The AES compositional depth profiles of IGS_0nm, IGS500°C_80nm and IGS400°C_80nm.

Fig. 5
Fig. 5

Device parameters of CIGS solar cells with PDT at 300°C, 400°C, 500°C and solar cells with surface sulfurization treatment (maked with “★”).

Fig. 6
Fig. 6

J-V curves of CIGS device with PDT and without PDT. The Cu/(In+Ga) atomic ratio for the device is 0.99.

Metrics