Abstract

A 24-pair Si-rich SiNx/SiOx-based distributed Bragg reflector (DBR) architecture, in situ doped with Si nanocrystals (Si-ncs), is studied to show self-photoluminescence (PL) with narrow-linewidth green-color emission pattern. By cascaded depositing, the broadband luminescent SiNx/SiOx pairs with SiNx and SiOx layer thickness of 45 and 86 nm and corresponding refractive indices of 1.96 and 1.62, respectively, and the transmitted PL linewidth of the in situ Si-nc-doped DBR emitter/filter centered at a wavelength of 533 nm greatly reduces from 150 to 10 nm, which is achieved by blocking the UV and blue luminescence at 400–510 nm with the DBR filter bandwidth up to 95 nm. A multilayer DBR modeling is established to simulate the transmitted PL from the summation of each emissive SiNx/SiOx pair, providing a coincident PL shape with a spectral linewidth of 15 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science 260(5104), 40–46 (1993).
    [CrossRef] [PubMed]
  2. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  3. T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
    [CrossRef]
  4. A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996).
    [CrossRef]
  5. G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
    [CrossRef]
  6. F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
    [CrossRef]
  7. C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
    [CrossRef]
  8. D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
    [CrossRef]
  9. A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
    [CrossRef]
  10. G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
    [CrossRef]
  11. G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
    [CrossRef]
  12. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
    [CrossRef]
  13. A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
    [CrossRef]
  14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals- Molding the Flow of Light (Princeton University Press, 2008).
  15. A. L. Shabalov and M. S. Feldman, “Optical and dielectric properties of thin SiOx films of variable composition,” Thin Solid Films 110(3), 215–224 (1983).
    [CrossRef]
  16. J.-F. Lelievre, A. Kaminski, J.-P. Boyeaux, R. Monna, and M. Lemiti, “Optical properties of PECVD and UVCVD SiNx:H antireflection coatings for silicon solar cells,” IEEE Photovoltaic Specialists Conference, 2005.
  17. A. Belarouci and F. Gourbilleau, “Si/SiO2 superlattice based optical planar microcavity,” Appl. Phys. B 88(2), 237–240 (2007).
    [CrossRef]

2010 (1)

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

2007 (3)

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

A. Belarouci and F. Gourbilleau, “Si/SiO2 superlattice based optical planar microcavity,” Appl. Phys. B 88(2), 237–240 (2007).
[CrossRef]

2006 (2)

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

2005 (2)

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

2004 (1)

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

2002 (1)

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1999 (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

1996 (1)

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996).
[CrossRef]

1993 (1)

S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science 260(5104), 40–46 (1993).
[CrossRef] [PubMed]

1983 (1)

A. L. Shabalov and M. S. Feldman, “Optical and dielectric properties of thin SiOx films of variable composition,” Thin Solid Films 110(3), 215–224 (1983).
[CrossRef]

Aguilar-Hernández, J.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Alonso, J. C.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Amans, D.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

Belarouci, A.

A. Belarouci and F. Gourbilleau, “Si/SiO2 superlattice based optical planar microcavity,” Appl. Phys. B 88(2), 237–240 (2007).
[CrossRef]

Benami, A.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Callard, S.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

Caristia, L.

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Cheng, B. W.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Cho, K. S.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Chou, L. J.

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Chueh, Y. L.

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Coffa, S.

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Contreras-Puente, G.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Creazzo, T.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Eloisacastagna, M.

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Feldman, M. S.

A. L. Shabalov and M. S. Feldman, “Optical and dielectric properties of thin SiOx films of variable composition,” Thin Solid Films 110(3), 215–224 (1983).
[CrossRef]

Franzo, G.

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Gagnaire, A.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

Gourbilleau, F.

A. Belarouci and F. Gourbilleau, “Si/SiO2 superlattice based optical planar microcavity,” Appl. Phys. B 88(2), 237–240 (2007).
[CrossRef]

Grigoropoulos, S.

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996).
[CrossRef]

Hao, R.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Huh, C.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Huisken, F.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

Iacona, F.

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

Irrera, A.

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

Iyer, S. S.

S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science 260(5104), 40–46 (1993).
[CrossRef] [PubMed]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Joseph, J.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

Kim, K. H.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Kim, T. Y.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Kuo, H. C.

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

Ledoux, G.

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

Leonardi, S.

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Li, C. B.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Lin, C. J.

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Lin, C. K.

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Lin, G.-R.

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Lorenti, S.

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Luo, L. P.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Mao, R. W.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Marchena, E.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Moreira, E. C.

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

Murakowski, J.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Muscara, A.

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Nassiopoulos, A. G.

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996).
[CrossRef]

Ortiz, A.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Pacifici, D.

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

Papadimitriou, D.

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996).
[CrossRef]

Park, N. M.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Ponce, A.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Prather, D. W.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Priolo, F.

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Redding, B.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Romeu, D.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Santana, G.

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Shabalov, A. L.

A. L. Shabalov and M. S. Feldman, “Optical and dielectric properties of thin SiOx films of variable composition,” Thin Solid Films 110(3), 215–224 (1983).
[CrossRef]

Shi, S.

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Shi, W. H.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Shin, J. H.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Sung, G. Y.

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Wang, Q. M.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Xie, Y.-H.

S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science 260(5104), 40–46 (1993).
[CrossRef] [PubMed]

Yu, J. Z.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Zhao, L.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Zuo, Y. H.

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Appl. Phys. B (1)

A. Belarouci and F. Gourbilleau, “Si/SiO2 superlattice based optical planar microcavity,” Appl. Phys. B 88(2), 237–240 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996).
[CrossRef]

G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

J. Appl. Phys. (2)

G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004).
[CrossRef]

J. Lumin. (1)

A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Mater. Sci. Eng. C (1)

F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002).
[CrossRef]

Nanotechnology (1)

A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007).
[CrossRef]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Science (1)

S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science 260(5104), 40–46 (1993).
[CrossRef] [PubMed]

Thin Solid Films (2)

A. L. Shabalov and M. S. Feldman, “Optical and dielectric properties of thin SiOx films of variable composition,” Thin Solid Films 110(3), 215–224 (1983).
[CrossRef]

T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010).
[CrossRef]

Other (2)

J.-F. Lelievre, A. Kaminski, J.-P. Boyeaux, R. Monna, and M. Lemiti, “Optical properties of PECVD and UVCVD SiNx:H antireflection coatings for silicon solar cells,” IEEE Photovoltaic Specialists Conference, 2005.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals- Molding the Flow of Light (Princeton University Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The PL of single SiNx/SiOx layer; (b) TEM image of Si-ncs; (c) The DBR architecture; (d) TEM image of SiNx/SiOx pair.

Fig. 2
Fig. 2

(a). Experimental (black) and simulation (red) results on the reflectance spectra of the in situ self-luminescent DBR filter and the schematic diagram of reflectance spectroscopy. (b) The measured and the simulated DBR reflectance obtained by pumping at incident angles of 10°, 20°, 30° and 40°

Fig. 3
Fig. 3

(a) The PL of single-pair SiNx/SiOx layer (black line) and the transmittance of the 24-pair DBR filter (blue dash line). (b) The simulated (red dash line) and measured (black line) PL of 24-pair in situ self-luminescent DBR filter with the inset photograph showing its luminescence pattern.

Fig. 4
Fig. 4

(a) The PL of DBR sample obtained with different pump power. (b) The PL intensity versus pumping power.

Fig. 5
Fig. 5

The simulated transmittance of different DBR pairs

Fig. 6
Fig. 6

(a) The schematic diagram of PL simulation. (b) The experimental and simulated PL spectra.

Fig. 7
Fig. 7

(a) The PL spectra obtained from the bottom SiOx (upper plot) and the top SiNx (lower plot) sides of the 24-pair DBR structure. (b) The experimental and simulated reflection spectra obtained from the bottom SiOx (upper pot) and the top SiNx (lower plot) sides of the 24-pair DBR structure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P t o t a l ( λ ) n = 1 24 P n ( λ ) P L ( λ ) P p u m p w 2 ( z ) π n = 1 24 e ( n 1 ) [ α S i O x ( 405 n m ) d S i O x + α S i N x ( 405 n m ) d S i N x ] T p u m p 2 ( n 1 ) T D B R ( n 1 ) ,

Metrics