Abstract

Superbroadband emission from 1.0 to 1.7 μm wavelength was observed in thulium-bismuth (Tm-Bi) codoped sodium-germanium-gallate (NGG) glasses under 793 nm excitation. Efficient energy transfer process from Bi to Tm ions, with value as high as 67.7%, was achieved which is beneficial in achieving flat broadband lineshape. The large stimulated emission cross-section and measured lifetime confirm the potentials of Tm-Bi codopants as luminescence sources for superbroadband near-infrared (NIR) optical amplifiers and tunable lasers. Planar optical waveguides were fabricated successfully in the codoped NGG glasses using K+-Na+ ion-exchange process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
    [CrossRef] [PubMed]
  2. S. Kasap, “Optoelectronics” in The Optics Encyclopedia, edited by T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber (Wiley-VCH, Weihein, Germany, 2004), Vol. 4. pp. 2237–2284.
  3. See, for example, Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, eds., (Marcel Dekker, 2001), and references therein.
  4. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd 3+ and Pr 3+ in gallate glasses with low phonon energies,” Appl. Opt. 36(24), 5839–5843 (1997).
    [CrossRef] [PubMed]
  5. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
    [CrossRef]
  6. Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003).
    [CrossRef]
  7. D. L. Yang, H. Lin, and E. Y. B. Pun, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
    [CrossRef]
  8. B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
    [CrossRef] [PubMed]
  9. S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
    [CrossRef]
  10. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er(3+)-Tm(3+) codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
    [CrossRef] [PubMed]
  11. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
    [CrossRef]
  12. D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
    [CrossRef]
  13. Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
    [CrossRef]
  14. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18810 (2010).
    [CrossRef] [PubMed]
  15. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
    [CrossRef]
  16. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
    [CrossRef]
  17. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
    [CrossRef]
  18. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
    [CrossRef]
  19. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  20. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
    [CrossRef] [PubMed]
  21. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [CrossRef]
  22. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, and S. Shen, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express 14(22), 10452–10459 (2006).
    [CrossRef] [PubMed]
  23. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.
  24. D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009).
    [CrossRef]
  25. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  26. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  27. B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
    [CrossRef]
  28. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. J. M. Fernández-Navarro, and D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
    [CrossRef] [PubMed]
  29. J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
    [CrossRef]
  30. F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
    [CrossRef]
  31. Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+ -Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
    [CrossRef] [PubMed]
  32. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  33. T. H. Lee and J. Heo, “Energy transfer processes and Ho3+: 5I5 level population dynamics in chalcohalide glasses,” Phys. Rev. B 73(14), 144201 (2006).
    [CrossRef]
  34. H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
    [CrossRef]
  35. R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
    [CrossRef]
  36. M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato, “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24(12), 3023–3033 (2007).
    [CrossRef]
  37. Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007).
    [CrossRef]
  38. Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
    [CrossRef]
  39. J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, and J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009).
    [CrossRef]
  40. H. P. Xia and X. J. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
    [CrossRef]
  41. K. Liu and E. Y. B. Pun, “Buried ion-exchanged glass waveguides using field-assisted annealing,” IEEE Photon. Technol. Lett. 17(1), 76–78 (2005).
    [CrossRef]

2010

B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
[CrossRef] [PubMed]

B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18810 (2010).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

2009

J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, and J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009).
[CrossRef]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

D. L. Yang, H. Lin, and E. Y. B. Pun, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
[CrossRef]

2008

2007

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato, “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24(12), 3023–3033 (2007).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007).
[CrossRef]

2006

H. P. Xia and X. J. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

T. H. Lee and J. Heo, “Energy transfer processes and Ho3+: 5I5 level population dynamics in chalcohalide glasses,” Phys. Rev. B 73(14), 144201 (2006).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, and S. Shen, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express 14(22), 10452–10459 (2006).
[CrossRef] [PubMed]

2005

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

K. Liu and E. Y. B. Pun, “Buried ion-exchanged glass waveguides using field-assisted annealing,” IEEE Photon. Technol. Lett. 17(1), 76–78 (2005).
[CrossRef]

2004

2003

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003).
[CrossRef]

2002

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[CrossRef]

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

2000

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
[CrossRef]

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

1999

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

1997

1962

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Afonso, C. N.

Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+ -Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
[CrossRef] [PubMed]

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Akada, T.

Alfonso, C. N.

Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007).
[CrossRef]

Almenara, J. M.

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

Arriandiaga, M. A.

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. J. M. Fernández-Navarro, and D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Bae, B. S.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Balda, R.

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. J. M. Fernández-Navarro, and D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Bao, F.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Bensalah, A.

Bigot, L.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Bookey, H. T.

Boulon, G.

Bowman, S. R.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Brocklesby, W. S.

Brown, G.

Bufetov, I. A.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Cerullo, G.

Chen, D.

Chen, G.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Chiodo, N.

Crawford, J.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Dianov, E. M.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, and J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009).
[CrossRef]

Douay, M.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Driesen, K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Fernández, J.

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. J. M. Fernández-Navarro, and D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Fernández-Navarro, J. M.

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Fernández-Navarro, J. M. J. M.

Fujimoto, Y.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Ganem, J.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Glodis, P. F.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Görller-Walrand, C.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Goutaudier, C.

Guyot, Y.

Han, Y. S.

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003).
[CrossRef]

Hector, J.

Heo, J.

T. H. Lee and J. Heo, “Energy transfer processes and Ho3+: 5I5 level population dynamics in chalcohalide glasses,” Phys. Rev. B 73(14), 144201 (2006).
[CrossRef]

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003).
[CrossRef]

Hewak, D. W.

Huang, A.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

Huang, L.

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er(3+)-Tm(3+) codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
[CrossRef] [PubMed]

Hughes, M. A.

Ito, M.

Jenkins, N. W.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Jha, A.

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Kar, A. K.

Lacha, L. M.

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. J. M. Fernández-Navarro, and D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Lahoz, F.

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

Lavin, V.

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

Lee, T. H.

T. H. Lee and J. Heo, “Energy transfer processes and Ho3+: 5I5 level population dynamics in chalcohalide glasses,” Phys. Rev. B 73(14), 144201 (2006).
[CrossRef]

Lerouge, A.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Li, C.

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

Lin, H.

B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18810 (2010).
[CrossRef] [PubMed]

B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
[CrossRef] [PubMed]

D. L. Yang, H. Lin, and E. Y. B. Pun, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009).
[CrossRef]

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

Lin, L.

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

Liu, K.

K. Liu and E. Y. B. Pun, “Buried ion-exchanged glass waveguides using field-assisted annealing,” IEEE Photon. Technol. Lett. 17(1), 76–78 (2005).
[CrossRef]

Liu, X.

Martin, I. R.

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

Meng, X.

Morinaga, K.

Muñoz-Martin, D.

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Murata, T.

Naftaly, M.

Nakatsuka, M.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Ohishi, Y.

Osellame, R.

Park, N.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Payne, D. N.

Peng, M.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Penninkhof, J. J.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Polman, A.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Psaila, N. D.

Pun, E. Y. B.

B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
[CrossRef] [PubMed]

B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18810 (2010).
[CrossRef] [PubMed]

D. L. Yang, H. Lin, and E. Y. B. Pun, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
[CrossRef]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

K. Liu and E. Y. B. Pun, “Buried ion-exchanged glass waveguides using field-assisted annealing,” IEEE Photon. Technol. Lett. 17(1), 76–78 (2005).
[CrossRef]

Qiao, Y.

Qiu, J.

Razdobreev, I.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Rodriguez, V. D.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Rodriguez-Mendoza, U. R.

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

Ruan, J.

Sato, H.

Schmidt, P.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Seddon, A. B.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Seo, S. Y.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Serna, R.

Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+ -Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
[CrossRef] [PubMed]

Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007).
[CrossRef]

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Shen, C.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Shen, S.

Shin, J. H.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Shraiman, B. I.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Song, J. H.

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003).
[CrossRef]

Stephens, M. J.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Su, L.

Suzuki, T.

Takebe, H.

Tanabe, S.

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[CrossRef]

Thomas, G. A.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Thomson, R. R.

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Truong, V. G.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Vickridge, I.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Wang, J.

Wang, X.

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

Wang, X. J.

H. P. Xia and X. J. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

Wang, Y.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Wondraczek, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

Wu, B.

Wu, E.

Xia, H. P.

H. P. Xia and X. J. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

Xiao, Z.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+ -Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
[CrossRef] [PubMed]

Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007).
[CrossRef]

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Xu, F.

Xu, J.

Xu, Y.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Yan, L.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

Yang, D.

B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
[CrossRef] [PubMed]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

Yang, D. L.

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009).
[CrossRef]

D. L. Yang, H. Lin, and E. Y. B. Pun, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
[CrossRef]

Yoshino, K.

Yu, Y.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Zeng, H.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, and J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009).
[CrossRef]

Zhang, F.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

Zhang, Q.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, and J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009).
[CrossRef]

Zhou, B.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18810 (2010).
[CrossRef] [PubMed]

B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
[CrossRef] [PubMed]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Zhu, C.

Zhu, F.

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009).
[CrossRef]

H. P. Xia and X. J. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

C. R. Chim.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[CrossRef]

Fusion Eng. Des.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Liu and E. Y. B. Pun, “Buried ion-exchanged glass waveguides using field-assisted annealing,” IEEE Photon. Technol. Lett. 17(1), 76–78 (2005).
[CrossRef]

J. Am. Ceram. Soc.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

J. Appl. Phys.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006).
[CrossRef]

Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

J. Non-Cryst. Solids

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007).
[CrossRef]

Laser Phys. Lett.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Nature

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Phys. Lett. A

Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010).
[CrossRef]

Phys. Rev.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

T. H. Lee and J. Heo, “Energy transfer processes and Ho3+: 5I5 level population dynamics in chalcohalide glasses,” Phys. Rev. B 73(14), 144201 (2006).
[CrossRef]

Other

S. Kasap, “Optoelectronics” in The Optics Encyclopedia, edited by T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber (Wiley-VCH, Weihein, Germany, 2004), Vol. 4. pp. 2237–2284.

See, for example, Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, eds., (Marcel Dekker, 2001), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical absorption spectra of (A) Bi (0.5 wt%), (B) Tm (0.5 wt%) singly doped and (C) Tm(0.5 wt%)-Bi(1.0 wt%) codoped NGG glasses. Inset shows the normalized PLE spectra of (a) Bi doped NGG monitored at 1326 nm, (b) Tm doped NGG at 1460 nm, and (c) Tm-Bi codoped NGG at 1460 nm.

Fig. 2
Fig. 2

Near-infrared emission spectra of Tm doped NGG glasses under (a) 476.5 nm and (b) 793 nm wavelength excitation. Inset of Fig. 2 (a) shows the lifetimes of Tm 1.20 and 1.45 μm emissions as a function of Tm concentration. Inset of Fig. 2(b) shows the normalized (with respect to the 1.20 μm emission) near-infrared emission spectra of Tm singly doped NGG glasses under 476.5 nm wavelength excitation.

Fig. 3
Fig. 3

(a) Near-infrared emission from Bi doped NGG glasses under 793 nm wavelength excitation. Inset shows the lifetime as a function of Bi concentration. (b) Normalized NIR emission with respect to the emission peak intensity under different excitation wavelengths.

Fig. 4
Fig. 4

(a) Near-infrared emission from Tm-Bi codoped NGG glasses with different concentration of Tm with Bi constant at 1.0 wt%. Inset shows the lifetime of Bi 1.3 μm emission as a function of Tm codopant concentration. (b) Normalized emission spectra of Tm (2.0 wt%), Bi (1.0 wt%) doped and Tm (2.0 wt%)-Bi(1.0 wt%) codoped NGG glasses with respect to the emission peak intensity under 980 nm wavelength excitation. Inset compares the emission spectra in wavelength region from 1.6 to 2.2 μm as recorded using a PbS detector.

Fig. 5
Fig. 5

Energy-level diagram of Tm-Bi in NGG glasses showing possible energy transfer processes. GS and ES represent ground state and each excited state of active Bi, respectively; ET1, ET2, ET3, and RET denote energy transfer processes Bi [ES1-GS]:Tm [3H6-3H5], Bi [ES1-GS]:Tm [3H6-3F4], Bi [ES1-GS]:Tm [3F4-3H4], Tm (3H4)→Bi (ES3), respectively; (i), (ii), (iii), (iv), and (v) stand for cross relaxation processes [1G4-3H4]:[3H6-3H5], [1G4-3F2]:[3H6-3F4], [3H4-3F4]:[3H6-3F4] that occur among Tm ions, [ES1-GS]:[ES1- ES3] among Bi ions, and Tm [3F4-3H4]:Bi [ES1-GS] between Tm and Bi ions, respectively.

Fig. 6
Fig. 6

Intensity of reflected light versus refractive index at 1536, 632.8, and 473 nm laser wavelengths. Inset shows the index profile at 473 nm of the K+-Na+ ion-exchanged glass waveguide carried out at 380 °C for 4 h.

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters of Tm Doped and Tm-Bi Codoped NGG Glasses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ e m ( λ ) = A λ 5 I ( λ ) 8 π c n 2 λ I ( λ ) d λ ,
σ e m ( λ 0 ) = A λ 0 2 η 4 π n 2 ( ln 2 π ) 1 / 2 1 Δ ν ,

Metrics