Abstract

The active waveguide grating structures (AWGS) are demonstrated as distributed feedback (DFB) configuration for polymer lasers. The thin film of a typical light-emitting polymer poly [(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1’,3}-thiadiazole)] acts both as the gain medium and as the waveguide. The grating structures are fabricated separately on top of the polymer film through interference lithography. The continuous and high-quality waveguide layer of the gain medium enables laser emission with narrow linewidth. Theoretical analysis and experimental verification imply potentially excellent performance of the organic DFB lasers based on the AWGS configuration. This kind of AWGS configuration is of particular importance for the design of electrically pumped polymer lasers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: A polymer laser dye,” Appl. Phys. Lett. 55, 22–27 (1993).
  2. F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
    [CrossRef]
  3. W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
    [CrossRef]
  4. N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
    [CrossRef]
  5. S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
    [CrossRef]
  6. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
    [CrossRef]
  7. V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
    [CrossRef]
  8. M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
    [CrossRef]
  9. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
    [CrossRef]
  10. P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
    [CrossRef]
  11. I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  12. H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
    [CrossRef]
  13. G. Kranzelbinder and G. Leising, “Organic solid-state lasers,” Rep. Prog. Phys. 63(5), 729–762 (2000).
    [CrossRef]
  14. M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
    [CrossRef]
  15. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
    [CrossRef] [PubMed]
  16. B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
    [CrossRef]
  17. E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
    [CrossRef]
  18. J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express 18(25), 25535–25545 (2010).
    [CrossRef] [PubMed]
  19. R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
    [CrossRef]
  20. G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [CrossRef]
  21. G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
    [CrossRef]

2010

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[CrossRef] [PubMed]

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express 18(25), 25535–25545 (2010).
[CrossRef] [PubMed]

2009

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

2007

I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

2005

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[CrossRef]

R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
[CrossRef]

2004

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

2003

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

2002

P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
[CrossRef]

2001

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

2000

G. Kranzelbinder and G. Leising, “Organic solid-state lasers,” Rep. Prog. Phys. 63(5), 729–762 (2000).
[CrossRef]

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

1996

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

1993

D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: A polymer laser dye,” Appl. Phys. Lett. 55, 22–27 (1993).

1972

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Andersson, M.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Andrew, P.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
[CrossRef]

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

Barnes, W.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
[CrossRef]

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

Barnes, W. L.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

Bleyer, A.

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

Boj, P.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Bradley, D.

R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
[CrossRef]

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

Calzado, E.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Chen, Y.

Cunningham, B. T.

Dawson, M.

Denton, G.

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Diaz-Garcia, M.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Díaz-García, M.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Friend, R.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Frolov, S.

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

Gaal, M.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

Gadermaier, C.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

Ge, C.

Gellermann, W.

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

Gong, S.

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

Gu, E.

Guilhabert, B.

Hara, M.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[CrossRef]

Heeger, A.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Heliotis, G.

R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
[CrossRef]

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

Herrnsdorf, J.

Hide, F.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Holzer, W.

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

Hongo, A.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Ichikawa, M.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Isoshima, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[CrossRef]

Jian, X.

Jory, M.

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

Juarros, A.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Kanibolotsky, A.

Kogelnik, H.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Koyama, T.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Kranzelbinder, G.

G. Kranzelbinder and G. Leising, “Organic solid-state lasers,” Rep. Prog. Phys. 63(5), 729–762 (2000).
[CrossRef]

Laurand, N.

Ledochowitsch, P.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Leising, G.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

G. Kranzelbinder and G. Leising, “Organic solid-state lasers,” Rep. Prog. Phys. 63(5), 729–762 (2000).
[CrossRef]

List, E.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

Lu, M.

Mackintosh, A.

Mednick, S.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Merino, S.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Moderegger, E.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

Moses, D.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: A polymer laser dye,” Appl. Phys. Lett. 55, 22–27 (1993).

Nagawa, M.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Nakano, Y.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Namdas, E.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Navarro-Fuster, V.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Ozaki, M.

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

Pei, Q.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Penzkofer, A.

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

Pethrick, R.

Plank, H.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

Pogantsch, A.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

Quintana, J.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Retolaza, A.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Samuel, I.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
[CrossRef]

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

Samuel, I. D.

I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Samuel, I. D. W.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

Schwartz, B.

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Shank, C.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Shirai, H.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Skabara, P.

Stavrinou, P.

R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
[CrossRef]

Tan, Y.

Taniguchi, Y.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Tessler, N.

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Tétreault, N.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Tong, M.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Trabadelo, V.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Tsuji, S.

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

Turnbull, G.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
[CrossRef]

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

Turnbull, G. A.

I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

Ubukata, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[CrossRef]

Vardeny, Z.

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

Villalvilla, J.

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

Welland, M.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Wenger, B.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Xia, R.

R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
[CrossRef]

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

Yoshino, K.

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

Yuen, J.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Adv. Funct. Mater.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Adv. Mater.

W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, and D. Bradley, “Laser action in poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene),” Adv. Mater. 8(12), 974–978 (1996).
[CrossRef]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[CrossRef]

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[CrossRef]

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Appl. Phys. Lett.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–22120 (2003).
[CrossRef]

V. Navarro-Fuster, E. Calzado, P. Boj, J. Quintana, J. Villalvilla, M. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[CrossRef]

M. Nagawa, M. Ichikawa, T. Koyama, H. Shirai, Y. Taniguchi, A. Hongo, S. Tsuji, and Y. Nakano, “Organic solid-state distributed feedback dye laser with a nonmorphological modification grating,” Appl. Phys. Lett. 77(17), 2641 (2000).
[CrossRef]

P. Andrew, G. Turnbull, I. Samuel, and W. Barnes, “Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser,” Appl. Phys. Lett. 81(6), 954 (2002).
[CrossRef]

D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: A polymer laser dye,” Appl. Phys. Lett. 55, 22–27 (1993).

R. Xia, G. Heliotis, P. Stavrinou, and D. Bradley, “Polyfluorene distributed feedback lasers operating in the green-yellow spectral region,” Appl. Phys. Lett. 87(3), 031104 (2005).
[CrossRef]

Chem. Rev.

I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[CrossRef]

Jpn. J. Appl. Phys.

S. Frolov, M. Ozaki, W. Gellermann, Z. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2, 5-dioctyloxy-p-phenylenevinylene) films,” Jpn. J. Appl. Phys. 35(Part 2, No. 10B), L1371–L1373 (1996).
[CrossRef]

Nature

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Opt. Express

Phys. Rev. B

G. Turnbull, P. Andrew, M. Jory, W. Barnes, and I. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64(12), 125122 (2001).
[CrossRef]

Rep. Prog. Phys.

G. Kranzelbinder and G. Leising, “Organic solid-state lasers,” Rep. Prog. Phys. 63(5), 729–762 (2000).
[CrossRef]

Science

F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, Q. Pei, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The design of the AWGS. (b) The AFM image of the grating structures.

Fig. 2
Fig. 2

The eigen modes (Electric field energy) of the DFB design with (a) the active layer spin-coated on top of the grating structures and (b) the grating fabricated on top of the continuous active. The color spots denote the.

Fig. 3
Fig. 3

The response to the defects in the grating structures of (a) the configuration with the grating underneath the active polymer layer and (b) the AWGS. The color spots denote the TE electric energy distribution.

Fig. 4
Fig. 4

(a) The molecular structure of the active polymer semiconductor F8BT. (b) The absorption and photoluminescence spectra of F8BT.

Fig. 5
Fig. 5

(a) Photograph of the surface-emitting polymer laser in the green. (b) Comparison of the transverse modes between the lasers based on the AWGS (left panel) and the conventional configuration with the active polymer spin-coated on top of the grating structures (right panel).

Fig. 6
Fig. 6

(a) Measured spectra of the lasing emission at different pump fluences. (b) Output intensity of the polymer laser as a function of the pump fluence, indicating a pump threshold of about 115 μJ/cm2.

Metrics