Abstract

A novel and simple bandwidth and wavelength-tunable optical bandpass filter based on silicon microrings in a Mach-Zehnder interferometer (MZI) structure is proposed and demonstrated. In this filter design, the drop transmissions of two microring resonators are combined to provide the desired tunability. A detailed analysis and the design of the device are presented. The shape factor and extinction ratio of the filter are optimized by thermally controlling the phase difference between the two arms of the MZI. Simultaneous bandwidth and wavelength tunability with in-band ripple control is demonstrated by thermally tuning the resonance offset between the two microring resonators.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20(8), 1525–1529 (2002).
    [CrossRef]
  2. M.-C. M. Lee and M. C. Wu, “Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators,” Opt. Lett. 31(16), 2444–2446 (2006).
    [CrossRef] [PubMed]
  3. J. Yao and M. C. Wu, “Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators,” Opt. Lett. 34(17), 2557–2559 (2009).
    [CrossRef] [PubMed]
  4. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 (2007).
    [CrossRef] [PubMed]
  5. B. Little, C. Sai, C. Wei, J. Hryniewicz, D. Gill, O. King, F. Johnson, R. Davidson, K. Donovan, C. Wenlu, and S. Grubb, “Tunable bandwidth microring resonator filters,” in the 34th European Conference on Optical Communication, ECOC 2008, 1–2.
  6. Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
    [CrossRef]
  7. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes,” J. Lightwave Technol. 25(1), 87–92 (2007).
    [CrossRef]
  8. M. A. Popović, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
    [CrossRef] [PubMed]
  9. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” in the 33th European Conference on Optical Communication, ECOC 2007, 1.2.3.
  10. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
    [CrossRef]
  11. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching, 2007, 67–68.
  12. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  13. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
    [CrossRef]
  14. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [CrossRef]
  15. Y. Ding, C. Peucheret, M. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Ou, X. Zhang, and D. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express 18(20), 21121–21130 (2010).
    [CrossRef] [PubMed]
  16. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [CrossRef]
  18. Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Elastic polarization converter based on dual microring resonators,” IEEE J. Quantum Electron. 45(8), 1033–1038 (2009).
    [CrossRef]
  19. R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
    [CrossRef]
  20. X. L. Cai, D. X. Huang, and X. L. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express 14(23), 11304–11311 (2006).
    [CrossRef] [PubMed]
  21. L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005).
    [CrossRef]
  22. Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
    [CrossRef]

2010 (1)

2009 (2)

Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Elastic polarization converter based on dual microring resonators,” IEEE J. Quantum Electron. 45(8), 1033–1038 (2009).
[CrossRef]

J. Yao and M. C. Wu, “Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators,” Opt. Lett. 34(17), 2557–2559 (2009).
[CrossRef] [PubMed]

2008 (2)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

2007 (3)

2006 (3)

2005 (2)

L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005).
[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

2002 (1)

1999 (1)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Beals, M. A.

Bergman, K.

Biberman, A.

Boyd, R. W.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Cai, X. L.

Carothers, D. N.

Chang, S.-J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Chen, L.

Chen, Y. J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Chen, Y.-K.

Chu, S. T.

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20(8), 1525–1529 (2002).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Ctyroky, J.

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005).
[CrossRef]

Cui, Y.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Ding, Y.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Gill, D. M.

Grove, M. J.

Hammer, M.

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Hiremath, K. R.

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

Huang, D.

Huang, D. X.

Hubalek, M.

L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005).
[CrossRef]

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Kaneko, T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

Kimerling, L. C.

Kokubun, Y.

Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol. 20(8), 1525–1529 (2002).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Lee, B. G.

Lee, J.-B.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Lee, M.-C. M.

Lipson, M.

Little, B. E.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Liu, L.

Manolatou, C.

McNab, S. J.

Michel, J.

Ni, C.-Y.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Ou, H.

Pan, W.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

Park, W.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Patel, S. S.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Peucheret, C.

Pomerene, A. T. S.

Popovic, M. A.

Prkna, L.

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005).
[CrossRef]

Pu, M.

Rasras, M. S.

Schonbrun, E.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Seoane, J.

Sherwood-Droz, N.

Sparacin, D. K.

Stoffer, R.

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

Suzuki, S.

Tinker, M.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Tu, K.-Y.

Vlasov, Y. A.

Wang, H.

Wang, Z.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

Watts, M.

White, A. E.

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Wu, M. C.

Wu, Q.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Xu, J.

Yanagase, Y.

Yao, J.

Zhang, X.

Y. Ding, C. Peucheret, M. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Ou, X. Zhang, and D. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express 18(20), 21121–21130 (2010).
[CrossRef] [PubMed]

Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Elastic polarization converter based on dual microring resonators,” IEEE J. Quantum Electron. 45(8), 1033–1038 (2009).
[CrossRef]

Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Elastic polarization converter based on dual microring resonators,” IEEE J. Quantum Electron. 45(8), 1033–1038 (2009).
[CrossRef]

Zhang, X. L.

Zsigri, B.

IEEE J. Quantum Electron. (2)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Elastic polarization converter based on dual microring resonators,” IEEE J. Quantum Electron. 45(8), 1033–1038 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11(1), 217–223 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, “Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters,” IEEE Photon. Technol. Lett. 11(11), 1423–1425 (1999).
[CrossRef]

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroky, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256(1-3), 46–67 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Other (3)

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching, 2007, 67–68.

B. Little, C. Sai, C. Wei, J. Hryniewicz, D. Gill, O. King, F. Johnson, R. Davidson, K. Donovan, C. Wenlu, and S. Grubb, “Tunable bandwidth microring resonator filters,” in the 34th European Conference on Optical Communication, ECOC 2008, 1–2.

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, fourth-order silicon microring-resonator add-drop filters,” in the 33th European Conference on Optical Communication, ECOC 2007, 1.2.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structure of the microring-MZI bandwidth and wavelength-tunable bandpass filter. It consists of two 3 dB splitters and two identical MRRs. One heater is added on top of each MRR for resonance offset tuning. Another heater is added on top of one straight waveguide for phase tuning of the MZI.

Fig. 2
Fig. 2

Principle of the microring-MZI OBPF. Transmissions and phase shifts of the two MRRs, as well as total transmission of the microring-MZI filter. Here parameters | κ 1 | 2 = | κ 2 | 2 = 0.1 ,   a 1 = a 2 = 0.99 , and Δ θ = π / 8 are assumed.

Fig. 3
Fig. 3

Left: Normalized bandwidth tunability and insertion loss as a function of the resonance offset for (a) different power coupling coefficients with a = 0.99 and (c) different roundtrip field transmission coefficients a with | κ | 2 = 0.20 . Right: ER and SF as a function of the resonance offset (in the effective resonance offset range) for (b) different power coupling coefficients with a = 0.99 and (d) different roundtrip field transmission coefficients a with | κ | 2 = 0.20 .

Fig. 4
Fig. 4

(a) Cross section of the designed waveguide and (b) corresponding TM0 mode profile of the electric field calculated by the full vectorial mode matching method [20,21].

Fig. 5
Fig. 5

(a) Scanning electron microscope (SEM) top view image of the coupling region of the MRR. (b) Optical microscope picture of the fabricated device. Two identical add-drop MRRs with micro-heaters are inserted in the two arms of the MZI structure. Heating powers of P1 and P2 , are applied to the MRR heaters, while an heating power of PMZI is applied to one of the heaters deposited on top of the straight sections of the MZI.

Fig. 6
Fig. 6

(a) Measured and fitted through transmission, which is normalized to a straight waveguide, of a single MRR. (b) Measured transfer functions showing SF and ER improvement at ϕ M Z I = π ( P M Z I = 11.6  mW ) compared to the Lorentzian-shapes at ϕ M Z I = 0 ( P M Z I = 0  mW ). Lorentzian fits of the transmissions of the two MRRs, as well as the filter are also represented.

Fig. 7
Fig. 7

(a) Measured bandwidth tunability of the fabricated device for in-band ripple smaller than 1 dB. The straight waveguide heating power is P M Z I = 11.6  mW . (b) FWHM bandwidth and shape factor of the filter as a function of the heating power applied to one of the MRRs.

Fig. 8
Fig. 8

(a) Transmission of the device for different heating powers combinations applied to the two MRRs, showing the center wavelength tunability. (b) Evolution of the center wavelength of the passband as a function of heating powers, as well as SF measured when tuning the wavelength. Only transfer functions with in-band ripple smaller than 1 dB are considered. The straight arm heating power is P M Z I = 11.6 mW .

Tables (1)

Tables Icon

Table 1 Comparison of Different Types of MRR-based OBPFs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t = 1 2 ( t 1 e j ϕ M Z I + t 2 ) ,
t i = κ 2 a exp ( j θ i / 2 ) 1 a ( 1 κ 2 ) exp ( j θ i ) , i = 1 , 2 ,

Metrics