Abstract

We investigate the propagation of surface plasmon polaritons through coupling of light to sub-radiant dipole modes in finite chains of Ag nanoparticles. End excitation of collections of closely spaced particles reveals a band of sub-radiant modes whereby the decay of surface plasmon polaritons due to radiative losses is minimized. We show that excitation of any of these sub-radiant modes results in the most efficient energy transfer throughout the optical spectrum, with smaller interparticle separations resulting in the longest propagation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  3. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
    [CrossRef]
  4. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
    [CrossRef]
  5. A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008).
    [CrossRef] [PubMed]
  6. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6(4), 715–719 (2006).
    [CrossRef] [PubMed]
  7. C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007).
    [CrossRef] [PubMed]
  8. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
    [CrossRef]
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  10. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
    [CrossRef]
  11. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
    [CrossRef]
  12. M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
    [CrossRef] [PubMed]
  13. P. Nordlander, “Plasmonics: Subwavelength imaging in colour,” Nat. Photonics 2(7), 387–388 (2008).
    [CrossRef]
  14. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
    [CrossRef] [PubMed]
  15. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
    [CrossRef] [PubMed]
  16. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
    [CrossRef]
  17. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
    [CrossRef]
  18. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
    [CrossRef]
  19. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005).
    [CrossRef]
  20. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4(9), 1561–1565 (2004).
    [CrossRef]
  21. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
    [CrossRef]
  22. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004).
    [CrossRef]
  23. S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74(12), 125111 (2006).
    [CrossRef]
  24. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
    [CrossRef]
  25. D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5(5), 985–989 (2005).
    [CrossRef] [PubMed]
  26. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
    [CrossRef]
  27. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007).
    [CrossRef] [PubMed]
  28. A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
    [CrossRef]
  29. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
    [CrossRef]
  30. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
    [CrossRef] [PubMed]
  31. J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
    [CrossRef]
  32. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
    [CrossRef] [PubMed]
  33. J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25(6), 4204–4229 (1982).
    [CrossRef]
  34. B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008).
    [CrossRef]
  35. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
    [CrossRef] [PubMed]
  36. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983).
    [CrossRef] [PubMed]
  37. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
    [CrossRef]
  38. R. Brako, “Optical properties of composite media,” J. Phys. C Solid State Phys. 11(15), 3345–3355 (1978).
    [CrossRef]
  39. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley and Sons, 1975).
  40. D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19(4), 2359–2368 (1979).
    [CrossRef]
  41. F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30(9), 4989–4999 (1984).
    [CrossRef]
  42. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
    [CrossRef]
  43. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
    [CrossRef]
  44. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [CrossRef] [PubMed]
  45. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
    [CrossRef]
  46. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
    [CrossRef] [PubMed]

2010 (3)

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[CrossRef]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

2008 (6)

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008).
[CrossRef]

P. Nordlander, “Plasmonics: Subwavelength imaging in colour,” Nat. Photonics 2(7), 387–388 (2008).
[CrossRef]

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008).
[CrossRef] [PubMed]

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[CrossRef]

2007 (5)

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007).
[CrossRef] [PubMed]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[CrossRef]

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
[CrossRef]

K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
[CrossRef] [PubMed]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007).
[CrossRef] [PubMed]

2006 (4)

S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74(12), 125111 (2006).
[CrossRef]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6(4), 715–719 (2006).
[CrossRef] [PubMed]

2005 (5)

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005).
[CrossRef]

D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5(5), 985–989 (2005).
[CrossRef] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

2004 (5)

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
[CrossRef]

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
[CrossRef]

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4(9), 1561–1565 (2004).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004).
[CrossRef]

2003 (3)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

2002 (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[CrossRef]

2001 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[CrossRef] [PubMed]

2000 (2)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

1998 (1)

1984 (1)

F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30(9), 4989–4999 (1984).
[CrossRef]

1983 (1)

1982 (1)

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25(6), 4204–4229 (1982).
[CrossRef]

1979 (1)

D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19(4), 2359–2368 (1979).
[CrossRef]

1978 (1)

R. Brako, “Optical properties of composite media,” J. Phys. C Solid State Phys. 11(15), 3345–3355 (1978).
[CrossRef]

1975 (1)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[CrossRef]

Arnold, M. D.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Ausloos, M.

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25(6), 4204–4229 (1982).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[CrossRef]

Bergman, D. J.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[CrossRef] [PubMed]

D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19(4), 2359–2368 (1979).
[CrossRef]

Blaber, M. G.

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Brako, R.

R. Brako, “Optical properties of composite media,” J. Phys. C Solid State Phys. 11(15), 3345–3355 (1978).
[CrossRef]

Brandl, D.

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Chan, C. T.

Choquette, J. J.

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[CrossRef]

Citrin, D. S.

D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5(5), 985–989 (2005).
[CrossRef] [PubMed]

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4(9), 1561–1565 (2004).
[CrossRef]

Claro, F.

F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30(9), 4989–4999 (1984).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Crozier, K. B.

Dahmen, C.

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007).
[CrossRef] [PubMed]

de Waele, R.

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
[CrossRef]

Dereux, A.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
[CrossRef]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Durant, S.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Ford, M. J.

Fuchs, R.

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
[CrossRef]

Fung, K. H.

Gérardy, J. M.

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25(6), 4204–4229 (1982).
[CrossRef]

Girard, C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
[CrossRef]

Govyadinov, A. A.

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[CrossRef]

Gray, S. K.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

Halas, N. J.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Harris, N.

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Huang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[CrossRef]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Knoester, J.

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koenderink, A. F.

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[CrossRef]

Lee, T.-W.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[CrossRef]

Li, K.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

Li, X.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

Li, Z.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Liu, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[CrossRef]

Malyshev, A. V.

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008).
[CrossRef] [PubMed]

Malyshev, V. A.

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008).
[CrossRef] [PubMed]

Markel, V. A.

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[CrossRef]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[CrossRef]

Marzlin, K.-P.

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[CrossRef]

Meier, M.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Nordlander, P.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

P. Nordlander, “Plasmonics: Subwavelength imaging in colour,” Nat. Photonics 2(7), 387–388 (2008).
[CrossRef]

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008).
[CrossRef]

Ono, A.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Park, S. Y.

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004).
[CrossRef]

Pelton, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

Pinchuk, A. O.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Polman, A.

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Prangsma, J. C.

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
[CrossRef]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Quidant, R.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Sanders, B. C.

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[CrossRef]

Sarychev, A. K.

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[CrossRef]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Schatz, G. C.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74(12), 125111 (2006).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

Schmidt, B.

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007).
[CrossRef] [PubMed]

Seideman, T.

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6(4), 715–719 (2006).
[CrossRef] [PubMed]

Simovski, C. R.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005).
[CrossRef]

Simsek, E.

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[CrossRef] [PubMed]

Stroud, D.

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004).
[CrossRef]

Su, K. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
[CrossRef]

Sukharev, M.

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6(4), 715–719 (2006).
[CrossRef] [PubMed]

Togan, E.

Tretyakov, S. A.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005).
[CrossRef]

Verma, P.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Viitanen, A. J.

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005).
[CrossRef]

von Plessen, G.

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Weeber, J.-C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
[CrossRef]

Wei, Q. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
[CrossRef]

Willingham, B.

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008).
[CrossRef]

Wokaun, A.

Xu, H.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Yang, T.

Zhang, S.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Zhang, X.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74(12), 125111 (2006).
[CrossRef]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (1)

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

J. Phys. C Solid State Phys. (1)

R. Brako, “Optical properties of composite media,” J. Phys. C Solid State Phys. 11(15), 3345–3355 (1978).
[CrossRef]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

Mater. Sci. Eng. B (1)

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Nano Lett. (8)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008).
[CrossRef] [PubMed]

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6(4), 715–719 (2006).
[CrossRef] [PubMed]

C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007).
[CrossRef] [PubMed]

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4(9), 1561–1565 (2004).
[CrossRef]

D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5(5), 985–989 (2005).
[CrossRef] [PubMed]

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nat. Photonics (2)

P. Nordlander, “Plasmonics: Subwavelength imaging in colour,” Nat. Photonics 2(7), 387–388 (2008).
[CrossRef]

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[CrossRef]

Phys. Rev. B (17)

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975).
[CrossRef]

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25(6), 4204–4229 (1982).
[CrossRef]

D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19(4), 2359–2368 (1979).
[CrossRef]

F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30(9), 4989–4999 (1984).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[CrossRef]

A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008).
[CrossRef]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007).
[CrossRef]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74(12), 125111 (2006).
[CrossRef]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley and Sons, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical properties of finite chains with varying particle numbers N and center-to-center separations d(σ) = σa, calculated by generalized Mie theory for Ag spheres with radius a = 25 nm. (a) Energy splitting, ∆E, between the longitudinal L (red) and transverse T (blue) dipole modes as a function of N for σ = 2.1, and σ = 3.0. (b) Optical extinction spectra of linear chains for L and T incident polarization and varying N at σ = 2.1. (c) Dependence of the optical absorption and scattering spectra of chains with N = 10 on σ for L-polarization. Note the different scales for Qabs and Qscat.

Fig. 2
Fig. 2

Surface charge density, Re[ρpol], along a chain of N = 10 Ag nanoparticles of radii a = 25 nm at interparticle separations of σ = 2.1. Polarization induced charge density waves are highlighted by the magenta lines and have standing wavelengths of λ0/n, which is further illustrated by a line segment (black line) of the surface charge density taken along the surface of each particle through the chain axis. Collective excitation at energies corresponding to Qabs, shown on the left, induces optically active plasmon modes of both super- (n = 1) and sub-radiant (n = 3, 5) nature.

Fig. 3
Fig. 3

SPP near-field intensity profiles along Ag particle chains with a = 25 nm and N = 50 as σ is varied. The chains are excited at the end particle and the intensity values are taken at the interparticle gaps. Excitation energies (eV) are chosen to maximize SPP propagation and are shown in the inset as a function of σ. Error bars represent the bandwidth for SPP propagation via sub-radiant plasmon modes. Top: Real part of the surface charge density along the z-axis for a chain with σ = 2.1 after end-excitation at 2.62 eV.

Fig. 4
Fig. 4

Correlation between optical spectra and SPP decay for N = 50 chains of Ag nanoparticles with a radius of a = 25 nm for varying σ = 2.1, 2.4, and 3.0. Upper left panel schematically illustrates the asymmetric end-excitation used in the calculations of SPP propagation, where intensity values are sampled at the nanoparticle gaps. (a) Plot of the 1/e decay length for each σ showing an energy band where maximum SPP propagation takes place. Accompanying optical extinction spectra confirm the assignment of this energy band to sub-radiant plasmon modes. (b), (c), and (d) show intensity profiles where a maximum decay length is obtained at each separation σ (color plots), compared to excitation at energies just outside the bands highlighted in (a), which leads to strongly non-exponential intensity profiles.

Fig. 5
Fig. 5

Quasi-static calculations of chains for σ = 2.1. (a) Extinction spectrum for longitudinally polarized collective excitation and with N = 5. The inset illustrates the trends of the λ = 1 plasmon modes as a function of σ. The charge plot taken at 3.2 eV confirms the identity of sub-radiant modes. (b) End-excitation of finite particle chains shows a progressive increase of the cumulative sum of the dipole moment at sub-radiant modes for increasing N.

Fig. 6
Fig. 6

Dispersion relation for SPPs supported by an Ag nanoparticle chain with a = 25 nm and N = 50 at σ = 2.1. The red colored region denotes the energy band formed by the sub-radiant plasmon modes at which minimum SPP decay is found. The inset illustrates the method used to extract the propagating wave-number k|| within the sub-radiant band and compares collective (2.62 eV) to localized excitation (3.45 eV).

Tables (1)

Tables Icon

Table 1 Decay Constants b(σ) as Function of Nanoparticle Radius a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l 2 l + 1 q l m i + j i N p k H p k j l m i q p k j = ω l 2 ω b 2 q l m i ,
P i = i ( l m q l m i l a i 2 l + 1 r i l Y l m ( θ i , ϕ i ) ) ,

Metrics