Abstract

We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Seife and D. Malakoff, “PHYSICS: Will Livermore Laser Ever Burn Brightly?” Science 289(5482), 1126–1129 (2000).
    [CrossRef]
  2. M. L. Andre, “Status of the LMJ project,” Proc. SPIE 3047, 38-42 (1996).
  3. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).
  4. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
    [CrossRef] [PubMed]
  5. A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
    [CrossRef] [PubMed]
  6. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [CrossRef]
  7. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [CrossRef] [PubMed]
  8. R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
    [CrossRef]
  9. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
    [CrossRef]
  10. K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
    [CrossRef]
  11. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [CrossRef] [PubMed]
  12. C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
    [CrossRef]
  13. M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
    [CrossRef]
  14. L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
    [CrossRef] [PubMed]
  15. S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004).
    [CrossRef]
  16. M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
    [CrossRef]
  17. H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
    [CrossRef] [PubMed]
  18. J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
    [CrossRef]

2010

2008

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

2007

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

2006

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

2005

2004

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004).
[CrossRef]

2003

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

2002

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

2001

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

2000

C. Seife and D. Malakoff, “PHYSICS: Will Livermore Laser Ever Burn Brightly?” Science 289(5482), 1126–1129 (2000).
[CrossRef]

1998

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

1996

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

Adams, F.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Awazu, K.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

Bercegol, H.

Bhattacharya, R.

S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004).
[CrossRef]

Birolleau, J. C.

Brenker, F. E.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Burke, M. W.

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Camp, D.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Carr, C. W.

Carr, J.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Conde, J. C.

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

Cross, D. A.

DeMange, P.

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Demos, S. G.

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Falkenberg, G.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Feit, M. D.

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Génin, F. Y.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004).
[CrossRef]

Gonzalez, P.

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

Guerra, M. F.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Hirano, M.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

Hosono, H.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

Huang, J.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Hutcheon, I.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Ikuta, Y.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

Jeanloz, R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Jiang, X. D.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Ju, X.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Kajihara, K.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

Kawazoe, H.

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

Kersten, M.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Kinoshita, T.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

Kozlowski, M. R.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Lamaignere, L.

Leon, B.

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

Li, C. H.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

Lusquinos, F.

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

Malakoff, D.

C. Seife and D. Malakoff, “PHYSICS: Will Livermore Laser Ever Burn Brightly?” Science 289(5482), 1126–1129 (2000).
[CrossRef]

Martin, M. C.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Nambissan, P. M. G.

S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004).
[CrossRef]

Neauport, J.

Negres, R. A.

Norton, M. A.

Panero, W. R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Perez-Amor, M.

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

Pilon, F.

Radtke, M.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

Reiche, I.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

Rickers, K.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Riesemeier, H.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

Rosenfeld, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Salleo, A.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Sands, T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Seife, C.

C. Seife and D. Malakoff, “PHYSICS: Will Livermore Laser Ever Burn Brightly?” Science 289(5482), 1126–1129 (2000).
[CrossRef]

Sheehan, L.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Somogyi, A.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Stoian, R.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

Strub, E.

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

Sutton, S. B.

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Taylor, S. T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Torres, R.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Vekemans, B.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Vincze, L.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Wu, W. D.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Yan, M.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

Yu, X. H.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Zheng, W. G.

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

Anal. Chem.

L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

J. Appl. Phys.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[CrossRef]

K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003).
[CrossRef]

J. Non-Cryst. Solids

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Nat. Mater.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003).
[CrossRef] [PubMed]

Nucl. Instrum Meth. B

C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010).
[CrossRef]

M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008).
[CrossRef]

Opt. Express

Phys. Lett. A

S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004).
[CrossRef]

Phys. Rev. Lett.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[CrossRef] [PubMed]

Proc. SPIE

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[CrossRef]

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

Science

C. Seife and D. Malakoff, “PHYSICS: Will Livermore Laser Ever Burn Brightly?” Science 289(5482), 1126–1129 (2000).
[CrossRef]

Vacuum

J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002).
[CrossRef]

Other

M. L. Andre, “Status of the LMJ project,” Proc. SPIE 3047, 38-42 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SXRF spectra obtained for three parallel samples irradiated by UV laser with same parameters (F = 2 J/cm2, 100 pulses).

Fig. 2
Fig. 2

SXRF spectra obtained both for pristine silica surface and irradiated zone.

Fig. 3
Fig. 3

Semi-quantitative analysis for cerium, iron, nickel and copper variation under elevating repetition frequency laser irradiation. Red dot lines were used to aid the eyes.

Fig. 4
Fig. 4

Deconvoluted PALS lifetime and intensity under different repetition frequencies laser irradiation. Red dot lines were used to aid the eyes.

Fig. 5
Fig. 5

FT-IR spectra obtained both for pristine silica surface and irradiated zone.

Fig. 6
Fig. 6

The deconvoluted IR spectrum (a) and semi-quantitative analysis for peak area variation under elevating repetition frequency laser irradiation (b). Red dot lines were used to aid the eyes.

Fig. 7
Fig. 7

AFM images of typical surface morphology both for untreated and laser irradiated samples, (a) Pristine silica surface; (b) f = 1 Hz; (c) f = 5 Hz; (d) f = 10 Hz. The scanning area is 20 × 20 μm2. Black arrows pointing to some typical voids are added to aid the eyes.

Fig. 8
Fig. 8

The spatial distribution of laser beams at different repetition frequencies.

Tables (1)

Tables Icon

Table 1 Effect of repetition frequency on the PALS parameters for fused silica (F = 2 J/cm2; 100 pulses)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ b = I 1 + I 2 I 1 / τ 1 + I 2 / τ 2 , τ a v = τ 1 I 1 + τ 2 I 2 I 1 + I 2 , k d = I 2 I 1 ( 1 τ b 1 τ 2 )

Metrics