Abstract

This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

© 2011 OSA

PDF Article
OSA Recommended Articles
Offline estimation of decay time for an optical cavity with a low pass filter cavity model

Abhijit G. Kallapur, Toby K. Boyson, Ian R. Petersen, and Charles C. Harb
Opt. Lett. 37(15) 3018-3020 (2012)

Frequency domain analysis for laser-locked cavity ringdown spectroscopy

T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb
Opt. Express 19(9) 8092-8101 (2011)

Noise in cavity ring-down spectroscopy caused by transverse mode coupling

Haifeng Huang and Kevin K. Lehmann
Opt. Express 15(14) 8745-8759 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [Crossref]
  2. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [Crossref]
  3. K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, vol. 720 of ACS Symposium Series (American Chemical Society, Washington, DC, 1999).
  4. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
    [Crossref]
  5. J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
    [Crossref]
  6. A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 701233 (1999).
    [Crossref]
  7. M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
    [Crossref]
  8. M. A. Everest and D. B. Atkinson, “Discrete Sums for the Rapid Determination of Exponential Decay Constants,” Rev. Sci. Instrum. 79, 023108–023108–9 (2008).
    [Crossref] [PubMed]
  9. C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, Theoretical, Mathematical & Computational Physics (Springer-Verlag, Berlin, Heidelberg, Germany, 2009), 4th ed.
  10. A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in “IEEE International Conference on Control Applications (CCA),” (Yokohama, Japan, 2010), pp. 298–303.
  11. S. Z. Sayed Hassen, E. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity Using LQG Integral Control,” in “17th IFAC World Congress,” (Seoul, South-Korea, 2008), pp. 1821–1826.
  12. S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
    [Crossref]
  13. S. Z. Sayed Hassen and I. R. Petersen, “A time-varying Kalman filter approach to integral LQG frequency locking of an optical cavity,” in “American Control Conference,” (Baltimore, MD, USA, 2010), pp. 2736–2741.
  14. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, Germany, 2000).
  15. H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, Germany, 2004), 2nd ed.
  16. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
    [Crossref]

2009 (1)

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

2008 (1)

M. A. Everest and D. B. Atkinson, “Discrete Sums for the Rapid Determination of Exponential Decay Constants,” Rev. Sci. Instrum. 79, 023108–023108–9 (2008).
[Crossref] [PubMed]

2005 (1)

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

2000 (1)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

1999 (1)

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 701233 (1999).
[Crossref]

1998 (2)

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Atkinson, D. B.

M. A. Everest and D. B. Atkinson, “Discrete Sums for the Rapid Determination of Exponential Decay Constants,” Rev. Sci. Instrum. 79, 023108–023108–9 (2008).
[Crossref] [PubMed]

Bachor, H. A.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, Germany, 2004), 2nd ed.

Beames, J. M.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

Boyson, T. K.

A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in “IEEE International Conference on Control Applications (CCA),” (Yokohama, Japan, 2010), pp. 298–303.

Busch, K. W.

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, vol. 720 of ACS Symposium Series (American Chemical Society, Washington, DC, 1999).

Busch, M. A.

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, vol. 720 of ACS Symposium Series (American Chemical Society, Washington, DC, 1999).

Butler, T. J. A.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Chen, G.

C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, Theoretical, Mathematical & Computational Physics (Springer-Verlag, Berlin, Heidelberg, Germany, 2009), 4th ed.

Chui, C. K.

C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, Theoretical, Mathematical & Computational Physics (Springer-Verlag, Berlin, Heidelberg, Germany, 2009), 4th ed.

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Everest, M. A.

M. A. Everest and D. B. Atkinson, “Discrete Sums for the Rapid Determination of Exponential Decay Constants,” Rev. Sci. Instrum. 79, 023108–023108–9 (2008).
[Crossref] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, Germany, 2000).

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in “IEEE International Conference on Control Applications (CCA),” (Yokohama, Japan, 2010), pp. 298–303.

Harris, J. S.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Heurs, M.

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Huntington, E.

S. Z. Sayed Hassen, E. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity Using LQG Integral Control,” in “17th IFAC World Congress,” (Seoul, South-Korea, 2008), pp. 1821–1826.

Huntington, E. H.

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

Istratov, A. A.

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 701233 (1999).
[Crossref]

James, M. R.

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

S. Z. Sayed Hassen, E. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity Using LQG Integral Control,” in “17th IFAC World Congress,” (Seoul, South-Korea, 2008), pp. 1821–1826.

Kallapur, A. G.

A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in “IEEE International Conference on Control Applications (CCA),” (Yokohama, Japan, 2010), pp. 298–303.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Kruger, C. H.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Martin, J.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Mazurenka, M.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Orr-Ewing, A. J.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

Owano, T. G.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Paldus, B. A.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Petersen, I. R.

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in “IEEE International Conference on Control Applications (CCA),” (Yokohama, Japan, 2010), pp. 298–303.

S. Z. Sayed Hassen, E. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity Using LQG Integral Control,” in “17th IFAC World Congress,” (Seoul, South-Korea, 2008), pp. 1821–1826.

S. Z. Sayed Hassen and I. R. Petersen, “A time-varying Kalman filter approach to integral LQG frequency locking of an optical cavity,” in “American Control Conference,” (Baltimore, MD, USA, 2010), pp. 2736–2741.

Ralph, T. C.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, Germany, 2004), 2nd ed.

Sayed Hassen, S. Z.

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

S. Z. Sayed Hassen and I. R. Petersen, “A time-varying Kalman filter approach to integral LQG frequency locking of an optical cavity,” in “American Control Conference,” (Baltimore, MD, USA, 2010), pp. 2736–2741.

S. Z. Sayed Hassen, E. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity Using LQG Integral Control,” in “17th IFAC World Congress,” (Seoul, South-Korea, 2008), pp. 1821–1826.

Shillings, A. J. L.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

Spence, T. G.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

Vyvenko, O. F.

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 701233 (1999).
[Crossref]

Wada, R.

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

Wahl, E. H.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

Willke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Xie, J.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

Zoller, P.

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, Germany, 2000).

Appl. Phys. B: Lasers Opt. (2)

M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, “Fast fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2,” Appl. Phys. B: Lasers Opt. 81, 135–141 (2005).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization using an Optical Resonator,” Appl. Phys. B: Lasers Opt. 31, 97–105 (1983).
[Crossref]

Chem. Phys. Lett. (1)

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, and R. N. Zare, “Near-Infrared Cavity Ringdown Spectroscopy of Water Vapor in an Atmospheric Flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[Crossref]

J. Appl. Phys. (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-Locked Ring-Down Spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Z. Sayed Hassen, M. Heurs, E. H. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity using Linear-Quadratic Gaussian Integral Control,” J. Phys. B: At. Mol. Opt. Phys. 42, 175501 (2009).
[Crossref]

Rev. Sci. Instrum. (4)

A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Rev. Sci. Instrum. 701233 (1999).
[Crossref]

A. O’Keefe and D. A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, “A Laser-Locked Cavity Ring-DOWN Spectrometer Employing an Analog Detection Scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

M. A. Everest and D. B. Atkinson, “Discrete Sums for the Rapid Determination of Exponential Decay Constants,” Rev. Sci. Instrum. 79, 023108–023108–9 (2008).
[Crossref] [PubMed]

Other (7)

C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications, Theoretical, Mathematical & Computational Physics (Springer-Verlag, Berlin, Heidelberg, Germany, 2009), 4th ed.

A. G. Kallapur, I. R. Petersen, T. K. Boyson, and C. C. Harb, “Nonlinear Estimation of a Fabry-Perot Optical Cavity for Cavity Ring-Down Spectroscopy,” in “IEEE International Conference on Control Applications (CCA),” (Yokohama, Japan, 2010), pp. 298–303.

S. Z. Sayed Hassen, E. Huntington, I. R. Petersen, and M. R. James, “Frequency Locking of an Optical Cavity Using LQG Integral Control,” in “17th IFAC World Congress,” (Seoul, South-Korea, 2008), pp. 1821–1826.

K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, vol. 720 of ACS Symposium Series (American Chemical Society, Washington, DC, 1999).

S. Z. Sayed Hassen and I. R. Petersen, “A time-varying Kalman filter approach to integral LQG frequency locking of an optical cavity,” in “American Control Conference,” (Baltimore, MD, USA, 2010), pp. 2736–2741.

C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, Germany, 2000).

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, Germany, 2004), 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics