Abstract

A compensation scheme for thermally induced birefringence in Faraday isolators is proposed. With the use of this scheme a 36-fold increase of the isolation degree was attained in experiment. A comparative analysis of the considered scheme and the earlier Faraday isolator schemes with high average radiation power is performed. A method for optimizing the earlier Faraday isolator scheme with birefringence compensation is developed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
    [CrossRef]
  2. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [CrossRef]
  3. I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
    [CrossRef]
  4. T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).
  5. N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
    [CrossRef]
  6. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [CrossRef] [PubMed]
  7. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
    [CrossRef]
  8. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
    [CrossRef]
  9. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
    [CrossRef]
  10. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
    [CrossRef]
  11. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
    [CrossRef]
  12. N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
    [CrossRef]
  13. A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
    [CrossRef]
  14. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31(7), 488–503 (1941).
    [CrossRef]
  15. M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
    [CrossRef]
  16. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).
  17. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [CrossRef] [PubMed]
  18. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Novel magnetooptical mediums for cryogenic Faraday isolator,” in ICONO/LAT 2010 (2010), LTuL23.

2010

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

2009

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[CrossRef]

2007

2006

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

2004

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

2002

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[CrossRef] [PubMed]

2000

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

1999

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

1992

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
[CrossRef]

1969

M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

1941

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

Andreev, N.

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

Babin, A.

Barnes, N. P.

Chen, F. S.

M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

Fujimoto, Y.

Guagliardo, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Jones, R. C.

Kan, H.

Katin, E. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[CrossRef]

Kawanaka, J.

Kawashima, T.

Khazanov, E.

Khazanov, E. A.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[CrossRef]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Kiselev, A.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Lundock, R.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

Mal'shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

McFeron, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

Mehl, O.

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

Mukhin, I. B.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[CrossRef]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

Nakatsuka, M.

Nozawa, H.

Palashov, O.

Palashov, O. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[CrossRef]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

Petrovsky, G. T.

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

Petway, L. P.

Potemkin, A. K.

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

Poteomkin, A.

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Reitze, D.

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[CrossRef] [PubMed]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Tabor, M. J.

M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

Tokita, S.

Voitovich, A. V.

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[CrossRef]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

Yagi, H.

Yanagitani, T.

Yasuhara, R.

Yoshida, H.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Zarubina, T. V.

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

Zelenogorskii, V. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Zheleznov, D. S.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

Appl. Opt.

Class. Quantum Gravity

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[CrossRef]

IEEE J. Quantum Electron.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

J. Appl. Phys.

M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Commun.

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009).
[CrossRef]

Opt. Express

Opticheskii Zhurnal

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).

Quantum Electron.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000).
[CrossRef]

A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007).
[CrossRef]

Other

J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Novel magnetooptical mediums for cryogenic Faraday isolator,” in ICONO/LAT 2010 (2010), LTuL23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

FI schematic: (a) traditional, (b) internal compensation, (c) external compensation. 1,4 – polarizers; 2 – λ/2 plate; 3 – 45° MOE; 5 – 22.5° MOE; 6 – polarization rotator; 7 – additional optical element.

Fig. 2
Fig. 2

Integral depolarization as a function of normalized power p absorbed in MOE for [001] (a) and [111] (b) crystal orientations. Red curves – traditional FI [Fig. 1(a)]; blue curves – FI with internal compensation [Fig. 1(b)]; green curves – FI with external compensation [Fig. 1(c)]. Dashed curves are plotted for (a) by formulas (23)(25) and for (b) by formulas (23)(25) with the substitution of (11). The solid curves correspond to numerical computations under the condition θ1 = θ2 . The dashdot curves correspond to the numerical computations for the parameter values close to the optimum ones.

Fig. 3
Fig. 3

Integral depolarization versus θ r and D (a and b) and versus θ1 and θ12 (c and d) for internal [Fig. 1(b)] compensation (a and c) and external [Fig. 1(c)] compensation (b and d) for [001] crystal orientation.

Fig. 4
Fig. 4

Scheme for thermally induced depolarization measurement: 1 – calcite wedge, 2 – beam absorber, 3 – MOE, 4 – quartz rotator, 5 – additional optical element (TGG crystal), 6 – quartz wedge, 7 – Glan prism, 8 – CCD camera.

Fig. 5
Fig. 5

Integral depolarization versus laser radiation power. Circles – experimental results, solid curves – theoretical computations. Red color – γ0 ; blue color – γout for parameters realized in experiment, green color – γout for optimal parameters

Fig. 6
Fig. 6

Angular dependence of integral depolarization γ at external compensation.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E A = E 0 x 0 exp ( r 2 / r h 2 ) ,
Г = | E B x 0 | 2 | E A | 2 ,
γ = 0 2 π d ϕ 0 Г ( r , ϕ ) exp ( r 2 / r h 2 ) r d r 0 2 π d ϕ 0 exp ( r 2 / r h 2 ) r d r .
R ( θ r ) = ( cos θ r sin θ r sin θ r cos θ r ) ,                                       L ( θ p l ) = ( cos 2 θ p l sin 2 θ p l sin 2 θ p l cos 2 θ p l ) ,
F ( Ф = δ c 2 , δ l i n , Ψ ) = sin δ 2 ( cot δ 2 i δ l i n δ cos 2 Ψ δ c δ i δ l i n δ sin 2 Ψ δ c δ i δ l i n δ sin 2 Ψ cot δ 2 + i δ l i n δ cos 2 Ψ ) ,
δ 2 = δ l i n 2 + δ c 2 ,
δ l i n = p h 1 + ξ 2 tan 2 ( 2 θ 2 ϕ ) 1 + tan 2 ( 2 θ 2 ϕ ) ,
tan ( 2 Ψ 2 θ ) = ξ tan ( 2 ϕ 2 θ ) ,
p = Q P h λ κ ,
h = ( r / r h ) 2 + exp ( r 2 / r h 2 ) 1 ( r / r h ) 2 ,                                 ξ = 2 p 44 p 11 p 12 , Q = α T n 0 3 4 1 + ν 1 ν ( p 11 p 12 ) ,                         P h = ( 1 exp ( α 0 L ) ) P i n α 0 L P i n ,
ξ 1 ,                                       p p 1 + 2 ξ 3 ,
E B 0 = L ( 2 θ p l = π / 4 ) F ( Ф = π / 4 , δ l i n 1 , Ψ 1 ) E A , E B i n = L ( 2 θ p l = π / 4 θ r ) F ( Ф = π / 8 , δ l i n 2 , Ψ 2 ) R ( θ r ) F ( Ф = π / 8 , δ l i n 1 , Ψ 1 ) E A , E B o u t = L ( 2 θ p l = π / 4 θ r ) F ( Ф = 0, δ l i n 2 , Ψ 2 ) R ( θ r ) F ( Ф = π / 4 , δ l i n 1 , Ψ 1 ) E A .
δ l i n < < 1.
Г 0 = 2 sin 2 ( 2 Ψ π / 4 ) π 2 δ l i n 2 + O ( δ l i n 4 ) ,
Г in = 4 δ l i n l 2 π 2 ( 2 2 ) ( sin ( 2 θ r + 3 π 8 2 Ψ ) G + cos ( 3 π 8 + 2 Ψ ) ) 2 + O ( δ l i n 4 ) ,
Г out = δ l i n 1 2 π 2 ( π 2 cos ( 2 θ r 2 Ψ ) G + cos ( 2 Ψ ) sin ( 2 Ψ ) ) 2 + O ( δ l i n 4 ) ,
G = δ l i n 2 δ l i n 1 = D ( 1 + ξ 2 2 tan 2 ( 2 θ 2 ϕ ) ) ( 1 + ξ 1 2 tan 2 ( 2 θ 2 ϕ ) ) ,
D = p 2 / p 1 .
θ r i n = θ r i n o p t = 3 π / 8 + π m ,                                           G i n = G i n o p t = 1 ,
θ r o u t = θ r o u t o p t = 3 π / 8 + π m ,                                                 G o u t = G o u t o p t = 8 / π .
Г i n o p t = 4 ( π 2 2 ) 2 π 4 δ l i n 4 + O ( δ l i n 6 ) ,
Г o u t o p t = ( π 2 ) 2 4 π 4 δ l i n 4 + O ( δ l i n 6 ) .
γ 0 ( θ = π 8 ) = p 2 A 1 π 2 0.014 p 2 ,
γ i n ( θ r o p t , G o p t ) = p 4 A 2 π 4 3 32 ( π 2 2 ) 2 [ ξ 4 + 2 3 ξ 2 + 1 ] 0.4 10 5 [ ξ 4 + 2 3 ξ 2 + 1 ] p 4 ,
γ o u t ( θ r o p t , G o p t ) = p 4 A 2 π 4 3 32 ( π 2 ) 2 [ ξ 4 + 2 3 ξ 2 + 1 ] 5.3 10 5 [ ξ 4 + 2 3 ξ 2 + 1 ] p 4 ,
A 1 = 0 [ y + exp ( y ) 1 y ] 2 d y exp ( y ) 0.137 ,
A 2 = 0 [ y + exp ( y ) 1 y ] 4 d y exp ( y ) 0.042.

Metrics