Abstract

Ultra-high spectral resolution in the EUV and soft x-ray energy ranges requires the use of very high line density gratings with optimal design resulting in use of a Blazed Multilayer Grating (BMG) structure. Here we demonstrate the production of near-atomically perfect Si blazed substrates with an ultra-high groove density (10,000 l/mm) together with the measured and theoretical performance of an Al/Zr multilayer coating on the grating. A 1st order absolute efficiency of 13% and 24.6% was achieved at incidence angles of 11° and 36° respectively. Cross-sectional TEM shows the effect of smoothing caused by the surface mobility of deposited atoms and we correlate this effect with a reduction in peak diffraction efficiency. This work shows the high performance that can be achieved with BMGs based on small-period anisotropic etched Si substrates, but also the constraints imposed by the surface mobility of deposited species.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
    [CrossRef]
  2. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C. H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, “High-efficiency 5000 lines/mm multilayer-coated blazed grating for extreme ultraviolet wavelengths,” Opt. Lett. 35(15), 2615–2618 (2010).
    [CrossRef] [PubMed]
  3. M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
    [CrossRef] [PubMed]
  4. P. Philippe, S. Valette, O. Mata Mendez, and D. Maystre, “Wavelength demultiplexer: using echelette gratings on silicon substrate,” Appl. Opt. 24(7), 1006–1011 (1985).
    [CrossRef] [PubMed]
  5. C.-H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
    [CrossRef] [PubMed]
  6. http://www-cxro.lbl.gov/laboratories/coatings
  7. http://www.pcgrate.com/
  8. D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
    [CrossRef]
  9. E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
    [CrossRef]
  10. D. L. Voronov, E. H. Anderson, R. Cambie, S. Dhuey, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings,” Nucl. Instr. and Meth. A (to be published), http://dx.doi.org/10.1016/j.nima.2010.11.064
  11. H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
    [CrossRef]
  12. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, Ch.-H. Chang, L. I. Goray, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, and H. A. Padmore, “High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments,” Proc. SPIE 7802, 780207–1 - 780207–13 (2010).

2010

2008

2002

H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
[CrossRef]

2001

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

1999

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

1998

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

1996

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

1985

Ahn, M.

Anderson, E. H.

Baker, S.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Cambie, R.

Chang, C. H.

Chang, C.-H.

Domke, M.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Gaines, D. P.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

Gullikson, E. M.

Heilmann, R. K.

Kaindl, G.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Kotani, A.

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

Mata Mendez, O.

Maystre, D.

Okamoto, H.

H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
[CrossRef]

Padmore, H. A.

Parra, E.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Philippe, P.

Remmers, G.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Salmassi, F.

Schattenburg, M. L.

Schulz, K.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Shin, Sh.

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

Spiller, E.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Stearns, D. G.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

Sweeney, D. W.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

Tarrio, C.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Valette, S.

Voronov, D. L.

Warwick, T.

Wintgen, D.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Yashchuk, V. V.

Zhao, Y.

Zipp, L.

Appl. Opt.

J. Appl. Phys.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

J. Phase Equilibria

H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Proc. SPIE

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Rev. Mod. Phys.

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

Other

D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, Ch.-H. Chang, L. I. Goray, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, and H. A. Padmore, “High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments,” Proc. SPIE 7802, 780207–1 - 780207–13 (2010).

D. L. Voronov, E. H. Anderson, R. Cambie, S. Dhuey, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings,” Nucl. Instr. and Meth. A (to be published), http://dx.doi.org/10.1016/j.nima.2010.11.064

http://www-cxro.lbl.gov/laboratories/coatings

http://www.pcgrate.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

AFM images of the sawtooth silicon substrates with a groove density of 10,000 lines/mm (a); 3D AFM images of the grating before (b) and after (c) the ML deposition; average profiles of the grating grooves before and after the ML deposition (d).

Fig. 2
Fig. 2

Cross-sectional TEM image of the MBG (on the right) and electron diffraction from the Al/Zr multilayer stack (on the left).

Fig. 3
Fig. 3

Measurements (a) and simulations (b) of diffraction from the Al/Zr MBG for the incident angle of 11° and a wavelength of 19.2 nm. The insert shows the reflectance of the flat Al/Zr witness multilayer versus wavelength at the incidence angles of 5°. Simulations were performed for three models of a ML stack: a blazed model (open bars), a smoothed model (grey bars), and a realistic model (light grey bars).

Fig. 4
Fig. 4

The same as in Fig. 3, but for incidence angles of 36° and 30° for the grating and ML witness respectively.

Metrics