Abstract

Ultra-high spectral resolution in the EUV and soft x-ray energy ranges requires the use of very high line density gratings with optimal design resulting in use of a Blazed Multilayer Grating (BMG) structure. Here we demonstrate the production of near-atomically perfect Si blazed substrates with an ultra-high groove density (10,000 l/mm) together with the measured and theoretical performance of an Al/Zr multilayer coating on the grating. A 1st order absolute efficiency of 13% and 24.6% was achieved at incidence angles of 11° and 36° respectively. Cross-sectional TEM shows the effect of smoothing caused by the surface mobility of deposited atoms and we correlate this effect with a reduction in peak diffraction efficiency. This work shows the high performance that can be achieved with BMGs based on small-period anisotropic etched Si substrates, but also the constraints imposed by the surface mobility of deposited species.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
    [CrossRef]
  2. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C. H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, “High-efficiency 5000 lines/mm multilayer-coated blazed grating for extreme ultraviolet wavelengths,” Opt. Lett. 35(15), 2615–2618 (2010).
    [CrossRef] [PubMed]
  3. M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
    [CrossRef] [PubMed]
  4. P. Philippe, S. Valette, O. Mata Mendez, and D. Maystre, “Wavelength demultiplexer: using echelette gratings on silicon substrate,” Appl. Opt. 24(7), 1006–1011 (1985).
    [CrossRef] [PubMed]
  5. C.-H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 50 nm period gratings with multilevel interference lithography,” Opt. Lett. 33(14), 1572–1574 (2008).
    [CrossRef] [PubMed]
  6. http://www-cxro.lbl.gov/laboratories/coatings
  7. http://www.pcgrate.com/
  8. D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
    [CrossRef]
  9. E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
    [CrossRef]
  10. D. L. Voronov, E. H. Anderson, R. Cambie, S. Dhuey, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings,” Nucl. Instr. and Meth. A (to be published), http://dx.doi.org/10.1016/j.nima.2010.11.064
  11. H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
    [CrossRef]
  12. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, Ch.-H. Chang, L. I. Goray, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, and H. A. Padmore, “High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments,” Proc. SPIE 7802, 780207–1 - 780207–13 (2010).

2010 (1)

2008 (1)

2002 (1)

H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
[CrossRef]

2001 (1)

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

1999 (1)

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

1998 (1)

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

1996 (1)

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

1985 (1)

Ahn, M.

Anderson, E. H.

Baker, S.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Cambie, R.

Chang, C. H.

Chang, C.-H.

Domke, M.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Gaines, D. P.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

Gullikson, E. M.

Heilmann, R. K.

Kaindl, G.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Kotani, A.

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

Mata Mendez, O.

Maystre, D.

Okamoto, H.

H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
[CrossRef]

Padmore, H. A.

Parra, E.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Philippe, P.

Remmers, G.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Salmassi, F.

Schattenburg, M. L.

Schulz, K.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Shin, Sh.

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

Spiller, E.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Stearns, D. G.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

Sweeney, D. W.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

Tarrio, C.

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Valette, S.

Voronov, D. L.

Warwick, T.

Wintgen, D.

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Yashchuk, V. V.

Zhao, Y.

Zipp, L.

Appl. Opt. (1)

J. Appl. Phys. (1)

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84(2), 1003–1028 (1998).
[CrossRef]

J. Phase Equilibria (1)

H. Okamoto, “Al-Zr (Aluminum-Zirconium),” J. Phase Equilibria 23(5), 455–456 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, “High-resolution study of 1Po double-excitation states in helium,” Phys. Rev. A 53(3), 1424–1438 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. Spiller, S. Baker, E. Parra, and C. Tarrio, “Smoothing of Mirror Substrates by Thin-Film Deposition,” Proc. SPIE 3767, 143–153 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

A. Kotani and Sh. Shin, “Resonant inelastic x-ray scattering spectra for electrons in solids,” Rev. Mod. Phys. 73(1), 203–246 (2001).
[CrossRef]

Other (4)

D. L. Voronov, E. H. Anderson, R. Cambie, S. Dhuey, E. M. Gullikson, F. Salmassi, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings,” Nucl. Instr. and Meth. A (to be published), http://dx.doi.org/10.1016/j.nima.2010.11.064

http://www-cxro.lbl.gov/laboratories/coatings

http://www.pcgrate.com/

D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, Ch.-H. Chang, L. I. Goray, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, and H. A. Padmore, “High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments,” Proc. SPIE 7802, 780207–1 - 780207–13 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

AFM images of the sawtooth silicon substrates with a groove density of 10,000 lines/mm (a); 3D AFM images of the grating before (b) and after (c) the ML deposition; average profiles of the grating grooves before and after the ML deposition (d).

Fig. 2
Fig. 2

Cross-sectional TEM image of the MBG (on the right) and electron diffraction from the Al/Zr multilayer stack (on the left).

Fig. 3
Fig. 3

Measurements (a) and simulations (b) of diffraction from the Al/Zr MBG for the incident angle of 11° and a wavelength of 19.2 nm. The insert shows the reflectance of the flat Al/Zr witness multilayer versus wavelength at the incidence angles of 5°. Simulations were performed for three models of a ML stack: a blazed model (open bars), a smoothed model (grey bars), and a realistic model (light grey bars).

Fig. 4
Fig. 4

The same as in Fig. 3, but for incidence angles of 36° and 30° for the grating and ML witness respectively.

Metrics