Abstract

The novel red-emitting phosphors of Eu3+-activated Ca2 RF4PO4:Eu3+ (R=Gd, Y) prepared by a solid-state reaction have been evaluated as a candidate for white solid state lighting. The detailed luminescence properties, e.g., the excitation spectra, the luminescence spectra and quantum efficiency under the excitation of near-UV, and decay lifetimes were reported. The phosphors can be efficiently excited by near UV light and exhibit a dominant emission peaked at 611 nm (5D07F2) with CIE coordinates of (x=0.661, y=0.333). The thermal stabilities were investigated from the luminescence intensities, color purity and the decay curves by increasing temperature. The luminescence parameters related to white LEDs applications were compared to some red phosphors and discussed in details. The red-emitting Ca2RF4PO4:Eu3+ (R=Gd, Y) may be potentially useful in the fabrication of white LEDs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  2. S. Nakamura, and G. Fasol, The blue laser diode: GaN based blue light emitters and lasers (Springer-Verlag, Berlin, 1997), pp.126–223.
  3. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
    [CrossRef]
  4. C. Ronda, Luminescence-from theory to applications (Wiley-VCH, 2007), pp. 77–289.
  5. S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004).
    [CrossRef]
  6. R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
    [CrossRef]
  7. Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
    [CrossRef]
  8. V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
    [CrossRef]
  9. W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express 18(3), 2946–2951 (2010).
    [CrossRef] [PubMed]
  10. T. W. Kuo, W. R. Liu, and T. M. Chen, “Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs,” Opt. Express 18(3), 1888–1897 (2010).
    [CrossRef] [PubMed]
  11. C. H. Huang and T. M. Chen, “Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
    [CrossRef] [PubMed]
  12. S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
    [CrossRef]
  13. C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003).
    [CrossRef]
  14. T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express 18(S2), A231–A236 (2010).
    [CrossRef] [PubMed]
  15. L. Wang, X. Zhang, Z. Hao, Y. Luo, X. J. Wang, and J. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express 18(24), 25177–25182 (2010).
    [CrossRef] [PubMed]
  16. T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express 18(8), 8187–8192 (2010).
    [CrossRef] [PubMed]
  17. Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
    [CrossRef]
  18. Z. Tian, H. Liang, W. Chen, Q. Su, G. Zhang, and G. Yang, “Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+.,” Opt. Express 17(2), 956–962 (2009).
    [CrossRef] [PubMed]
  19. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
    [CrossRef]
  20. R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater. 8(7–8), 588–600 (2007).
    [CrossRef]
  21. J. Silver, and R. Withnall, “Color Conversion Phosphors for LEDS,” Chapter 3, in Luminescent Materials and Applications, A. Kitai, ed, (John Wiley & Sons, Adrian, 2008).
  22. K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
    [CrossRef]
  23. J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
    [CrossRef]
  24. P. C. de Sousa Filho and O. A. Serra, “Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method,” J. Fluoresc. 18(2), 329–337 (2008).
    [CrossRef]
  25. M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
    [CrossRef]
  26. M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
    [CrossRef]
  27. G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
    [CrossRef]
  28. D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem. 99(2), 404–408 (1992).
    [CrossRef]
  29. D. Van der Voort and G. Blasse, “Luminescence of the europium (3+) ion in zirconium (4+) compounds,” Chem. Mater. 3(6), 1041–1045 (1991).
    [CrossRef]
  30. C. H. Huang, T. W. Kuo, and T. M. Chen, “Thermally stable green Ba(3)Y(PO(4))3:Ce(3+),Tb(3+) and red Ca(3)Y(AlO)(3)(BO(3))4:Eu(3+) phosphors for white-light fluorescent lamps,” Opt. Express 19(S1Suppl 1), A1–A6 (2011).
    [CrossRef] [PubMed]
  31. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
    [CrossRef] [PubMed]
  32. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
    [CrossRef]
  33. Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
    [CrossRef]
  34. K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
    [CrossRef]
  35. N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
    [CrossRef]
  36. A. L. N. Stevels, “Effect of non-stoichiometry on the luminescence of Eu2+-doped aluminates with the β-alumina-type crystal structure,” J. Lumin. 17(1), 121–133 (1978).
    [CrossRef]
  37. L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin. 115(3-4), 77–90 (2005).
    [CrossRef]
  38. K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
    [CrossRef]
  39. U. Rambabu and S. Buddhudu, “Optical properties of LnPO4:Eu3+ (Ln=Y, La and Gd) powder phosphors,” Opt. Mater. 17(3), 401–408 (2001).
    [CrossRef]
  40. L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
    [CrossRef]

2011

2010

L. Wang, X. Zhang, Z. Hao, Y. Luo, X. J. Wang, and J. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express 18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
[CrossRef]

T. W. Kuo, W. R. Liu, and T. M. Chen, “Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs,” Opt. Express 18(3), 1888–1897 (2010).
[CrossRef] [PubMed]

W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express 18(3), 2946–2951 (2010).
[CrossRef] [PubMed]

C. H. Huang and T. M. Chen, “Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
[CrossRef] [PubMed]

T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express 18(8), 8187–8192 (2010).
[CrossRef] [PubMed]

T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express 18(S2), A231–A236 (2010).
[CrossRef] [PubMed]

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

2009

V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
[CrossRef]

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
[CrossRef]

Z. Tian, H. Liang, W. Chen, Q. Su, G. Zhang, and G. Yang, “Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+.,” Opt. Express 17(2), 956–962 (2009).
[CrossRef] [PubMed]

2008

P. C. de Sousa Filho and O. A. Serra, “Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method,” J. Fluoresc. 18(2), 329–337 (2008).
[CrossRef]

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
[CrossRef]

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

2007

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater. 8(7–8), 588–600 (2007).
[CrossRef]

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

2006

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

2005

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin. 115(3-4), 77–90 (2005).
[CrossRef]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
[CrossRef]

2004

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004).
[CrossRef]

2003

C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003).
[CrossRef]

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

2001

U. Rambabu and S. Buddhudu, “Optical properties of LnPO4:Eu3+ (Ln=Y, La and Gd) powder phosphors,” Opt. Mater. 17(3), 401–408 (2001).
[CrossRef]

1996

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[CrossRef]

1995

K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
[CrossRef]

1992

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem. 99(2), 404–408 (1992).
[CrossRef]

1991

D. Van der Voort and G. Blasse, “Luminescence of the europium (3+) ion in zirconium (4+) compounds,” Chem. Mater. 3(6), 1041–1045 (1991).
[CrossRef]

1978

A. L. N. Stevels, “Effect of non-stoichiometry on the luminescence of Eu2+-doped aluminates with the β-alumina-type crystal structure,” J. Lumin. 17(1), 121–133 (1978).
[CrossRef]

1974

J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

. Mitomo, M

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

. Suehiro, T

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Annapurna, K.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[CrossRef]

Bandi, V. R.

V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
[CrossRef]

Batentschuk, M.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Blasse, G.

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem. 99(2), 404–408 (1992).
[CrossRef]

D. Van der Voort and G. Blasse, “Luminescence of the europium (3+) ion in zirconium (4+) compounds,” Chem. Mater. 3(6), 1041–1045 (1991).
[CrossRef]

Botty, G.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Brito, H. F.

C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003).
[CrossRef]

Buddhudu, S.

U. Rambabu and S. Buddhudu, “Optical properties of LnPO4:Eu3+ (Ln=Y, La and Gd) powder phosphors,” Opt. Mater. 17(3), 401–408 (2001).
[CrossRef]

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[CrossRef]

Cheetham, A. K.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
[CrossRef]

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004).
[CrossRef]

Chen, I. G.

V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
[CrossRef]

Chen, K. B.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Chen, L.

L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
[CrossRef]

Chen, S.-H.

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

Chen, T. M.

Chen, W.

Cheng, B. M.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Chiu, Y. C.

de Sousa Filho, P. C.

P. C. de Sousa Filho and O. A. Serra, “Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method,” J. Fluoresc. 18(2), 329–337 (2008).
[CrossRef]

Delsing, A.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Dewith, G.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Disalvo, F.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Felinto, M.

C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003).
[CrossRef]

Fu, Y.

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Fu, Y. B.

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Gundiah, G.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
[CrossRef]

Guo, B.

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Han, B.

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Hanzawa, H.

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

Hao, Z.

Hintzen, H.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Hirosaki, N.

K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
[CrossRef]

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater. 8(7–8), 588–600 (2007).
[CrossRef]

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Hölsä, J.

M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
[CrossRef]

Hou, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Hsu, Y.-F.

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

Huang, C. H.

Inoue, K.

K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
[CrossRef]

Izuno, K.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Jang, S. M.

Kameo, Y.

K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
[CrossRef]

Kameshima, M.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Kang, X.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Kijima, N.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
[CrossRef]

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kimoto, K.

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Kiumra, N.

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

Kodaira, C. A.

C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003).
[CrossRef]

Koteswara Rao, K.

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

Kuo, T. W.

Kurita, A.

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

Lastusaari, M.

M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
[CrossRef]

Lee, C. S.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Li, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Li, G.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Li, Y. Q.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Liang, H.

Liang, H. B.

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Lin, C. C.

L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
[CrossRef]

W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express 18(3), 2946–2951 (2010).
[CrossRef] [PubMed]

Lin, H. H.

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Lin, J.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Liu, R. S.

W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express 18(3), 2946–2951 (2010).
[CrossRef] [PubMed]

L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
[CrossRef]

Liu, W. R.

Lu, T. H.

V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
[CrossRef]

Lu, Y.-C.

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

Luo, Y.

Martin, J. E.

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin. 115(3-4), 77–90 (2005).
[CrossRef]

Mitomo, M.

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

Miyako, Y.

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

Mukai, T.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Murazaki, Y.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Naitou, T.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Neeraj, S.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004).
[CrossRef]

Nien, Y. T.

V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
[CrossRef]

Niittykoski, J.

M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
[CrossRef]

Nishigaki, K.

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

Ohta, M.

K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
[CrossRef]

Osvet, A.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Radielovic, D.

J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Rambabu, U.

U. Rambabu and S. Buddhudu, “Optical properties of LnPO4:Eu3+ (Ln=Y, La and Gd) powder phosphors,” Opt. Mater. 17(3), 401–408 (2001).
[CrossRef]

Reddy, K. R.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[CrossRef]

Rohwer, L. S.

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin. 115(3-4), 77–90 (2005).
[CrossRef]

Sakuma, K.

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

Sato, M.

K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
[CrossRef]

Schneider, J.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Sekiguchi, T.i

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Serra, O. A.

P. C. de Sousa Filho and O. A. Serra, “Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method,” J. Fluoresc. 18(2), 329–337 (2008).
[CrossRef]

Shimomura, Y.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
[CrossRef]

Stevels, A. L. N.

A. L. N. Stevels, “Effect of non-stoichiometry on the luminescence of Eu2+-doped aluminates with the β-alumina-type crystal structure,” J. Lumin. 17(1), 121–133 (1978).
[CrossRef]

Su, Q.

Z. Tian, H. Liang, W. Chen, Q. Su, G. Zhang, and G. Yang, “Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+.,” Opt. Express 17(2), 956–962 (2009).
[CrossRef] [PubMed]

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Takeda, T.

K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
[CrossRef]

Tamaki, H.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Tanaka, M.

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

Tao, Y.

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Tian, F.

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Tian, Z.

Tian, Z. F.

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Toda, K.

K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
[CrossRef]

Tukia, M.

M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
[CrossRef]

van der Voort, D.

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem. 99(2), 404–408 (1992).
[CrossRef]

D. Van der Voort and G. Blasse, “Luminescence of the europium (3+) ion in zirconium (4+) compounds,” Chem. Mater. 3(6), 1041–1045 (1991).
[CrossRef]

Van Krevel, J. W. H.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Van Steen, J. E. J.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

Verstegen, J. W. P. J.

J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Vrenken, L. E.

J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

Wang, L.

Wang, S.-F.

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

Wang, X. J.

Wang, Y.-R.

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

Winnacker, A.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Wu, C. C.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Xia, Q.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Xie, R. J.

K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
[CrossRef]

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater. 8(7–8), 588–600 (2007).
[CrossRef]

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Xu, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Yamada, M.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Yamamoto,, Y.

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Yang, D.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Yang, G.

Yeh, C. W.

L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
[CrossRef]

Yeh, Y. T.

Zhang, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

Zhang, G.

Z. Tian, H. Liang, W. Chen, Q. Su, G. Zhang, and G. Yang, “Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+.,” Opt. Express 17(2), 956–962 (2009).
[CrossRef] [PubMed]

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Zhang, G. B.

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

Zhang, J.

Zhang, X.

Appl. Phys. Lett.

R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007).
[CrossRef]

N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Chem. Mater.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

D. Van der Voort and G. Blasse, “Luminescence of the europium (3+) ion in zirconium (4+) compounds,” Chem. Mater. 3(6), 1041–1045 (1991).
[CrossRef]

Chem. Phys. Lett.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
[CrossRef]

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004).
[CrossRef]

Electrochem. Solid-State Lett.

M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008).
[CrossRef]

Inorg. Chem.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010).
[CrossRef] [PubMed]

J. Alloy. Comp.

Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006).
[CrossRef]

K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995).
[CrossRef]

J. Am. Ceram. Soc.

V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009).
[CrossRef]

S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009).
[CrossRef]

J. Electrochem. Soc.

J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974).
[CrossRef]

J. Fluoresc.

P. C. de Sousa Filho and O. A. Serra, “Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method,” J. Fluoresc. 18(2), 329–337 (2008).
[CrossRef]

J. Lumin.

A. L. N. Stevels, “Effect of non-stoichiometry on the luminescence of Eu2+-doped aluminates with the β-alumina-type crystal structure,” J. Lumin. 17(1), 121–133 (1978).
[CrossRef]

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin. 115(3-4), 77–90 (2005).
[CrossRef]

J. Phys. Chem. C

F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009).
[CrossRef]

J. Solid State Chem.

C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003).
[CrossRef]

Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006).
[CrossRef]

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem. 99(2), 404–408 (1992).
[CrossRef]

Jpn. J. Appl. Phys.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003).
[CrossRef]

Mater.

L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010).
[CrossRef]

Mater. Res. Bull.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[CrossRef]

Opt. Express

Z. Tian, H. Liang, W. Chen, Q. Su, G. Zhang, and G. Yang, “Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+.,” Opt. Express 17(2), 956–962 (2009).
[CrossRef] [PubMed]

T. W. Kuo, W. R. Liu, and T. M. Chen, “Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs,” Opt. Express 18(3), 1888–1897 (2010).
[CrossRef] [PubMed]

W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express 18(3), 2946–2951 (2010).
[CrossRef] [PubMed]

C. H. Huang and T. M. Chen, “Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010).
[CrossRef] [PubMed]

T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express 18(8), 8187–8192 (2010).
[CrossRef] [PubMed]

T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express 18(S2), A231–A236 (2010).
[CrossRef] [PubMed]

C. H. Huang, T. W. Kuo, and T. M. Chen, “Thermally stable green Ba(3)Y(PO(4))3:Ce(3+),Tb(3+) and red Ca(3)Y(AlO)(3)(BO(3))4:Eu(3+) phosphors for white-light fluorescent lamps,” Opt. Express 19(S1Suppl 1), A1–A6 (2011).
[CrossRef] [PubMed]

L. Wang, X. Zhang, Z. Hao, Y. Luo, X. J. Wang, and J. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express 18(24), 25177–25182 (2010).
[CrossRef] [PubMed]

Opt. Mater.

M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005).
[CrossRef]

U. Rambabu and S. Buddhudu, “Optical properties of LnPO4:Eu3+ (Ln=Y, La and Gd) powder phosphors,” Opt. Mater. 17(3), 401–408 (2001).
[CrossRef]

Radiat. Meas.

Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010).
[CrossRef]

Sci. Technol. Adv. Mater.

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater. 8(7–8), 588–600 (2007).
[CrossRef]

Science

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Other

S. Nakamura, and G. Fasol, The blue laser diode: GaN based blue light emitters and lasers (Springer-Verlag, Berlin, 1997), pp.126–223.

C. Ronda, Luminescence-from theory to applications (Wiley-VCH, 2007), pp. 77–289.

J. Silver, and R. Withnall, “Color Conversion Phosphors for LEDS,” Chapter 3, in Luminescent Materials and Applications, A. Kitai, ed, (John Wiley & Sons, Adrian, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of Ca2YF4PO4:Eu3+ 5 mol % (a), 45 mol % (b), and Ca2GdF4PO4:Eu3+ 5 mol % (c), 45 mol % (d), which are compared with JCPDs Card No. 45-0459 (Ca2YF4PO4).

Fig. 2
Fig. 2

The excitation spectra of the red-emitting phosphors Ca2GdF4PO4:Eu3+ (a), and Ca2YF4PO4:Eu3+ (b) (λem = 611 nm) (b), which are compared with that of Y2O2S:Eu3+em = 627 nm) (c).

Fig. 3
Fig. 3

The UV excited (394 nm) luminescence spectra of Ca2GdF4PO4:Eu3+ (a), and Ca2YF4PO4:Eu3+ (b). The inset shows the dependence of the integrated emission intensities of Ca2 RF4PO4:Eu3+ (R=Gd, Y) on the doping levels.

Fig. 4
Fig. 4

The luminescence decay curve of the 5D0 level (611 nm, 5D07F2) in Ca2GdF4PO4:Eu3+ under the excitation of 355 nm pulsed YAG laser at 300 K.

Fig. 5
Fig. 5

The emission spectra of Ca2GdF4PO4:Eu3+ at the temperature of 20, 135, and 200 °C (a) and the temperature dependence of the integrated emission intensity in Ca2 RF4PO4:Eu3+ (R=Gd, Y) normalized with respect to the value at 20 °C (b). Inset shows the activation energies of the thermal quenching fitted in Eq. (1).

Fig. 6
Fig. 6

The luminescence decay curves of the 5D0 states in Ca2GdF4PO4:Eu3+ at 90 to 200°C.

Tables (2)

Tables Icon

Table 1 Comparison of the Emission Intensities of Ca2 RF4PO4:Eu3+ (R= Gd, Y) 5.0 mol % to that of GdPO4:Eu3+ (5.0 mol %), YPO4:Eu3+ (5.0 mol %) and Y2O2S:0.05Eu3+ Red Phosphors Under the Same Measurement Conditions.

Tables Icon

Table 2 The Luminescence Quantum Efficiencies of Ca2 RF4PO4:Eu3+ (R=Gd, Y) and Some Referred Phosphors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I T = I 0 [ 1 + c exp ( Δ E k T ) ] 1

Metrics