Abstract

We present a new technique suitable for generating broadband phase- and frequency-locked frequency combs in the mid-infrared. Our source is based on a degenerate optical parametric oscillator (OPO) which rigorously both down-converts and augments the spectrum of a pump frequency comb provided by a commercial mode-locked near-IR laser. Low intracavity dispersion, combined with extensive cross-mixing of comb components, results in extremely broad instantaneous mid-IR bandwidths. We achieve an output power of 60 mW and 20dB bandwidth extending from 2500 to 3800 nm. Among other applications, such a source is well-suited for coherent Fourier-transform spectroscopy in the absorption-rich mid-IR ‘molecular fingerprint’ region.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [CrossRef] [PubMed]
  2. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [CrossRef] [PubMed]
  3. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
    [CrossRef]
  4. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).
  5. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 mum region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007).
    [CrossRef] [PubMed]
  6. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
    [CrossRef]
  7. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32(17), 2478–2480 (2007).
    [CrossRef] [PubMed]
  8. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 um,” J. Opt. Soc. Am. B 17(12), 2086–2094 (2000).
    [CrossRef]
  9. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4. 8um from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
    [CrossRef] [PubMed]
  10. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008).
    [CrossRef] [PubMed]
  11. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2. 4um from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
    [CrossRef] [PubMed]
  12. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
    [CrossRef] [PubMed]
  13. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15(23), 15035–15040 (2007).
    [CrossRef] [PubMed]
  14. J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7(6), 230–235 (1971).
    [CrossRef]
  15. C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, “Coherence properties of a doubly-resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7(5), 815–820 (1990).
    [CrossRef]
  16. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
    [CrossRef] [PubMed]
  17. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
    [CrossRef]
  18. K. L. Vodopyanov, N. C. Leindecker, R. L. Byer, and V. Pervak, “More Than 1000-nm-wide Mid-IR Frequency Comb Based on Divide-by-2 Optical Parametric Oscillator”, CLEO/QELS 2010 Conference, Opt. Soc. Amer., paper CThH5 (2010).
  19. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York 1988).
  20. A. Marandi, N. Leindecker, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a mid-infrared frequency comb produced by a degenerate optical parametric oscillator,” CLEO/QELS 2011 Conference, Opt. Soc. Amer., paper QtuF2 (2011).

2010 (2)

2009 (1)

2008 (3)

A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008).
[CrossRef] [PubMed]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[CrossRef] [PubMed]

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

2007 (6)

2006 (1)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[CrossRef]

2004 (1)

2000 (1)

1990 (1)

1971 (1)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7(6), 230–235 (1971).
[CrossRef]

Adler, F.

Biegert, J.

Brida, D.

Briles, T. C.

Byer, R. L.

Cerullo, G.

Cirmi, G.

Colby, E.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

Cossel, K. C.

Day, T.

De Silvestri, S.

Digonnet, M.

England, R. J.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Erny, C.

Falk, J.

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7(6), 230–235 (1971).
[CrossRef]

Fejer, M. M.

Fermann, M. E.

Foltynowicz, A.

Gale, B. J. S.

Gambetta, A.

Gohle, C.

Guelachvili, G.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[CrossRef]

Hamm, P.

Hartl, I.

Holzwarth, R.

Ischebeck, R.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Kaindl, R. A.

Keilmann, F.

Keller, U.

Krausz, F.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

Kühlke, D.

Langrock, C.

Leitenstorfer, A.

Mandon, J.

Manzoni, C.

Marangoni, M.

Maslowski, P.

McGuinness, C.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Moutzouris, K.

Nabors, C. D.

Nelson, J.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Noble, R.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Picqué, N.

Plettner, T.

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[CrossRef] [PubMed]

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Ramponi, R.

Reid, D. T.

Reimann, K.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[CrossRef]

Sears, C. M. S.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Siemann, R. H.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Sorokin, E.

Sorokina, I. T.

Spencer, J.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Sun, J. H.

Thorpe, M. J.

Urbanek, K.

Vodopyanov, K. L.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[CrossRef]

Walz, D.

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Weiner, A. M.

Woerner, M.

Wong, S. T.

Wurm, M.

Yang, S. T.

Ye, J.

IEEE J. Quantum Electron. (1)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7(6), 230–235 (1971).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nat. Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32(17), 2478–2480 (2007).
[CrossRef] [PubMed]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[CrossRef] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4. 8um from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
[CrossRef] [PubMed]

A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008).
[CrossRef] [PubMed]

J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2. 4um from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007).
[CrossRef] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[CrossRef] [PubMed]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).

Other (3)

K. L. Vodopyanov, N. C. Leindecker, R. L. Byer, and V. Pervak, “More Than 1000-nm-wide Mid-IR Frequency Comb Based on Divide-by-2 Optical Parametric Oscillator”, CLEO/QELS 2010 Conference, Opt. Soc. Amer., paper CThH5 (2010).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York 1988).

A. Marandi, N. Leindecker, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a mid-infrared frequency comb produced by a degenerate optical parametric oscillator,” CLEO/QELS 2011 Conference, Opt. Soc. Amer., paper QtuF2 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the ring-cavity OPO setup. Here M1 is a dielectric mirror for in-coupling of the pump, M2 and M3 are concave and M4-M6 are flat gold-coated mirrors, PD1 is an InAs detector, the filter is a Ge-based long pass (> 2.5 µm) filter, OC is a pellicle outcoupler, and PZT is a piezo actuator stage.

Fig. 3
Fig. 3

Mid-IR OPO spectrum measured with a monochromator both with (black curve) and without (gray curve) 2nd -order GVD compensation using a ZnSe plate inside the cavity. Insets show the far-field mid-IR beam profile taken with a Pyrocam III Spiricon camera and the pump laser spectrum taken with an OSA.

Fig. 2
Fig. 2

OPO output power as a function of cavity length, revealing a number of discrete oscillation peaks.

Fig. 4
Fig. 4

Computed extra phase accumulated per cavity roundtrip due to the dispersion of 0.5-mm PPLN plus mirrors (gray curve) and (black curve) with ZnSe added for dispersion compensation. Horizontal dotted lines indicate calculated tolerance of the OPO for extra phase. Dashed line indicates parametric gain curve for the 0.5-mm PPLN.

Fig. 5
Fig. 5

Second-order autocorrelation trace measured via two-photon detection. The128-fs FWHM of the trace suggests pulse length of 91 fs.

Metrics