Abstract

We describe experimental investigation of pulsed output from a multi-wavelength fiber ring laser incorporating low frequency phase modulation with large modulation amplitude. The Erbium-doped fiber (EDF) ring laser generated more than 8 wavelength channels with the help of a phase modulator operating at 26.2 kHz and a periodic intra-cavity filter. For most cases, the laser output is pulsed in the form of mode-locking at 5.62 MHz and/or Q-switching at harmonic and sub-harmonic of the phase modulation frequency. Chaotic pulse output is also observed. The behavior of the output pulses are described as functions of pump power and phase modulation amplitude. The relative intensity noise (RIN) value of a single wavelength channel is measured to be under −100 dB/Hz (−140 dB/Hz beyond 1.5 GHz).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [CrossRef]
  2. S. K. Kim, M. J. Chu and J. H. Lee, “Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback”, OC 190, 291 (2001)
  3. J.-N. Maran and S. LaRochelle, “Temporal characterization of a multiwavelength erbium-doped fiber laser with frequency-shifter feedback,” Applications of Photonic Technology V, R. A. Lessard, G. A. Lampropoulos, and G. W.Schinn, eds., Proc. SPIE 4833, 855–861 (2002)
  4. O. G. Okhotnikov, “Multiwavelength picosecond frequency-shifted feedback laser with pulse control by a shaped-gain fiber amplifier,” Opt. Lett. 23(18), 1459–1461 (1998).
    [CrossRef]
  5. K. Zhou, D. Zhou, F. Dong, and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback,” Opt. Lett. 28(11), 893–895 (2003).
    [CrossRef] [PubMed]
  6. M. A. Mirza and G. Stewart, “Multiwavelength Operation of Erbium-Doped Fiber Lasers by Periodic Filtering and Phase Modulation,” J. Lightwave Technol. 27(8), 1034–1044 (2009).
    [CrossRef]
  7. F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
    [CrossRef] [PubMed]
  8. A. E. Siegman, “Lasers,” ch.26, Oxford Univ. Press, Oxford (1986)
  9. P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10(2), 51–53 (1967).
    [CrossRef]
  10. C. C. Cutler, “Why does linear phase-shift cause mode-locking?” IEEE J. Quantum Electron. 28(1), 282–288 (1992).
    [CrossRef]
  11. Q. Wu, J. Y. Zhou, X. G. Huang, Z. X. Li, and Q. X. Li, “Mode locking with linear and nonlinear phase shifts,” J. Opt. Soc. Am. B 10(11), 2080–2084 (1993).
    [CrossRef]
  12. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B 24(8), 1803–1806 (2007).
    [CrossRef]
  13. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
    [CrossRef]
  14. C. O. Weiss and R. Vilaseca, Dynamics of Lasers (VCH, 1991), Chap.7.
  15. H. Haken, Light (North-Holland, 1985),Vol. 2, Chap. 8.
  16. K. Otsuka, Nonlinear Dynamics in Optical Complex Systems (Kluwer Academic Publishers, 1999), Chap. 3.
  17. Y. G. Han, S. H. Kim, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. J. Chung, “Novel Raman Fiber Laser and Fiber-Optic Sensors Using Multi-Channel Fiber Gratings,” J. Opt. Soc. Korea 7(2), 97–101 (2003).
    [CrossRef]

2010 (1)

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

2009 (1)

2007 (1)

2003 (2)

2000 (1)

1998 (1)

1993 (2)

F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[CrossRef] [PubMed]

Q. Wu, J. Y. Zhou, X. G. Huang, Z. X. Li, and Q. X. Li, “Mode locking with linear and nonlinear phase shifts,” J. Opt. Soc. Am. B 10(11), 2080–2084 (1993).
[CrossRef]

1992 (1)

C. C. Cutler, “Why does linear phase-shift cause mode-locking?” IEEE J. Quantum Electron. 28(1), 282–288 (1992).
[CrossRef]

1967 (1)

P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10(2), 51–53 (1967).
[CrossRef]

Bellemare, A.

Buckley, J.

Chong, A.

Chung, Y. J.

Cutler, C. C.

C. C. Cutler, “Why does linear phase-shift cause mode-locking?” IEEE J. Quantum Electron. 28(1), 282–288 (1992).
[CrossRef]

Dong, F.

François, P. L.

F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[CrossRef] [PubMed]

Han, Y. G.

Huang, X. G.

Kang, J. U.

Karasek, M.

Kim, C. S.

Kim, S. H.

LaRochelle, S.

Le Boudec, P.

F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[CrossRef] [PubMed]

Lee, S. B.

Li, Q. X.

Li, Z. X.

Liu, X.

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

Mirza, M. A.

Ngo, N. Q.

Okhotnikov, O. G.

Paek, U. C.

Renninger, W.

Rochette, M.

Sanchez, F.

F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[CrossRef] [PubMed]

Smith, P. W.

P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10(2), 51–53 (1967).
[CrossRef]

Stephan, G.

F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[CrossRef] [PubMed]

Stewart, G.

Tetu, M.

Wise, F. W.

Wu, Q.

Zhou, D.

Zhou, J. Y.

Zhou, K.

Zhou, S.

Appl. Phys. Lett. (1)

P. W. Smith, “Phase locking of laser modes by continuous cavity length variation,” Appl. Phys. Lett. 10(2), 51–53 (1967).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. C. Cutler, “Why does linear phase-shift cause mode-locking?” IEEE J. Quantum Electron. 28(1), 282–288 (1992).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Korea (1)

Opt. Lett. (2)

Phys. Rev. A (2)

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

F. Sanchez, P. L. François, G. Stephan, and P. Le Boudec, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48(3), 2220–2229 (1993).
[CrossRef] [PubMed]

Other (6)

A. E. Siegman, “Lasers,” ch.26, Oxford Univ. Press, Oxford (1986)

S. K. Kim, M. J. Chu and J. H. Lee, “Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback”, OC 190, 291 (2001)

J.-N. Maran and S. LaRochelle, “Temporal characterization of a multiwavelength erbium-doped fiber laser with frequency-shifter feedback,” Applications of Photonic Technology V, R. A. Lessard, G. A. Lampropoulos, and G. W.Schinn, eds., Proc. SPIE 4833, 855–861 (2002)

C. O. Weiss and R. Vilaseca, Dynamics of Lasers (VCH, 1991), Chap.7.

H. Haken, Light (North-Holland, 1985),Vol. 2, Chap. 8.

K. Otsuka, Nonlinear Dynamics in Optical Complex Systems (Kluwer Academic Publishers, 1999), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Phase-modulated fiber ring laser with a periodic filter. (b) All-fiber PZT phase modulator and the modulation amplitude relations at 26.2 kHz resonance frequency.

Fig. 2
Fig. 2

Optical spectrum and time domain output for (a) when the PM was turned off showing CW and wavelength hopping and (b) when the PZT driving voltage was 10 Vp-p and P/Pth ~10 showing MW and pulsed output.

Fig. 3
Fig. 3

Output behaviors in time domain (top row) and RF spectral domain (bottom row) at low PZT driving voltages of 0 ~3 Vp-p as the pump power level increased (a) CW operation when r = 1 with PM turned off (b) Initiation of ML when r = 3 with 3 Vp-p (c) Stable mode-locked pulse train when r = 10 with 3 Vp-p.

Fig. 4
Fig. 4

Output behaviors in time domain (top row) and RF spectral domain (bottom row) at PZT driving voltages over 3 Vp-p with different pump power levels. (a) ML pulses with strong harmonics of 5.62 MHz and weak modulation at PM frequency of 26.2 KHz, when r ~10 with 3 Vp-p (b) Q-switched pulses with strong harmonics of 17.5 kHz when r ~10 with 6 Vp-p (c) non-periodic pulses with chaotic RF spectrum when r ~8 with 5 Vp-p. Dashed white lines denote −30 dBm as a reference power level.

Fig. 5
Fig. 5

Pulsation map for the pump power and the PZT driving voltage

Fig. 6
Fig. 6

Measured RIN and MW optical spectrum (inset).

Metrics