Abstract

In this study, three-dimensional (3D) crosslinked bovine serum albumin (BSA) microstructures containing gold nanorods (AuNRs) were fabricated via multiphoton excited photochemistry using Rose Bengal (RB) as the photoactivator. To retain AuNRs in the 3D crosslinked BSA microstructures, the laser wavelength was chosen for two-photon RB absorption for improved two-photon crosslinking efficiency, but not for enhancing the longitudinal plasmon resonance of AuNRs which may result in photothermal damage of AuNRs. Furthermore, with two-photon excitation of RB via AuNRs plasmonics, the laser power can be reduced by about 30%. As a result, 3D BSA microstructures containing AuNRs can be successfully fabricated. The AuNRs-doped BSA microstructures can be applied in biomedical scaffolds with plasmonic properties such as two-photon luminescence imaging and photothermal therapy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
    [CrossRef]
  2. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
    [CrossRef]
  3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  4. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  5. T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
    [CrossRef]
  6. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
    [CrossRef]
  7. M. A. Swartz, “Signaling in morphogenesis: transport cues in morphogenesis,” Curr. Opin. Biotechnol. 14(5), 547–550 (2003).
    [CrossRef] [PubMed]
  8. L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
    [CrossRef] [PubMed]
  9. S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
    [CrossRef] [PubMed]
  10. G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
    [CrossRef]
  11. R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
    [CrossRef] [PubMed]
  12. W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
    [PubMed]
  13. W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
    [CrossRef]
  14. W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
    [CrossRef]
  15. J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
    [CrossRef] [PubMed]
  16. A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
    [CrossRef] [PubMed]
  17. Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
    [CrossRef] [PubMed]
  18. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
    [CrossRef] [PubMed]
  19. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  20. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
    [CrossRef] [PubMed]
  21. K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission,” J. Fluoresc. 17(1), 7–13 (2006).
    [CrossRef] [PubMed]
  22. W. S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
    [CrossRef]
  23. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [CrossRef]
  24. D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol., A 47(1), 1–29 (1989).
    [CrossRef]
  25. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
    [CrossRef]

2010 (2)

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
[CrossRef]

2009 (3)

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

2008 (3)

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
[CrossRef] [PubMed]

2007 (1)

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

2006 (3)

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
[CrossRef]

K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission,” J. Fluoresc. 17(1), 7–13 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

2005 (2)

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

2003 (1)

M. A. Swartz, “Signaling in morphogenesis: transport cues in morphogenesis,” Curr. Opin. Biotechnol. 14(5), 547–550 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

2001 (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

2000 (2)

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

1999 (1)

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

1996 (1)

1995 (1)

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

1989 (1)

D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol., A 47(1), 1–29 (1989).
[CrossRef]

Abid, J. P.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Ai, X. C.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Akiyama, M.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Allen, R.

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

Aslan, K.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
[CrossRef] [PubMed]

K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission,” J. Fluoresc. 17(1), 7–13 (2006).
[CrossRef] [PubMed]

Basu, S.

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Benichou, E.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Boppart, S. A.

Braun, K.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Brevet, P. F.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

Bush, K. A.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
[CrossRef]

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Campagnola, P. J.

W. S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
[CrossRef]

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
[CrossRef]

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Candice, P.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Chang, C. N.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

Chang, C.-Y.

Chang, Y. T.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

Chen, C. Y.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Chen, S. J.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Chen, S. Y.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Chen, S.-J.

Chen, W. Q.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Cheresh, D. A.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Chien, Y. H.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Cho, K.-C.

Cunningham, L. P.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
[CrossRef]

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Dong, C.-Y.

Dong, X. Z.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Duan, M.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

Epling, G. A.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Geddes, C. D.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
[CrossRef] [PubMed]

K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission,” J. Fluoresc. 17(1), 7–13 (2006).
[CrossRef] [PubMed]

Giachelli, C. M.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Girault, H. H.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Goodman, S. L.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Griffin, J.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Hansen, M. N.

Hill, R. T.

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

Howell, A. R.

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Huang, C. C.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Huang, L. L. H.

Jonin, C.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Kalluri, J. R.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Kawata, S.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kochevar, I. E.

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kuebler, S. M.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Kuo, W. S.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C.-Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
[CrossRef]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Lambert, C. R.

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Li, W. M.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Liao, Q.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Liaw, L.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Lien, C.-H.

Lin, C.-Y.

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

Lyon, J. L.

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

Malyn, S. N.

K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission,” J. Fluoresc. 17(1), 7–13 (2006).
[CrossRef] [PubMed]

Marder, S. R.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Mu, C.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Nakanishi, S.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Nappa, J.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Naylor, K. M.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Neckers, D. C.

D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol., A 47(1), 1–29 (1989).
[CrossRef]

Neely, A.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

Oldenburg, A. L.

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Perry, J. W.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Pins, G. D.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
[CrossRef]

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Pitts, J. D.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Previte, M. J. R.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
[CrossRef] [PubMed]

Raines, E. W.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Ray, P. C.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Redmond, R. W.

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Revillod, G.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Ross, R.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Russier-Antoine, I.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

Schwartz, S. M.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Senapati, D.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Shear, J. B.

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

Singh, A. K.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Skinner, M. P.

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Stellacci, F.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Stevenson, K. J.

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

Sun, C. K.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Sun, Z. B.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Swartz, M. A.

M. A. Swartz, “Signaling in morphogenesis: transport cues in morphogenesis,” Curr. Opin. Biotechnol. 14(5), 547–550 (2003).
[CrossRef] [PubMed]

Taboada, R.

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Totani, K.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Varisli, B.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Wang, J.

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Wang, S.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Watanabe, T.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Webb, W. W.

Wei, A.

Wenseleers, W.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Wu, C. M.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Xu, C.

Xu, D. S.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Yang, M. H.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Yang, Z. S.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Yao, J. N.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Yeh, C. S.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Zhang, J. P.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
[CrossRef] [PubMed]

Zweifel, D. A.

ACS Nano (1)

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. (Deerfield Beach Fla.) 20(5), 914–919 (2008).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Appl. Phys. Lett. (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Biomacromolecules (1)

S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: Bioactivity and enzymatic degradation,” Biomacromolecules 6(3), 1465–1474 (2005).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (2)

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

Curr. Opin. Biotechnol. (1)

M. A. Swartz, “Signaling in morphogenesis: transport cues in morphogenesis,” Curr. Opin. Biotechnol. 14(5), 547–550 (2003).
[CrossRef] [PubMed]

Faraday Discuss. (1)

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

R. T. Hill, J. L. Lyon, R. Allen, K. J. Stevenson, and J. B. Shear, “Microfabrication of three-dimensional bioelectronic architectures,” J. Am. Chem. Soc. 127(30), 10707–10711 (2005).
[CrossRef] [PubMed]

J. Biomed. Mater. Res. (1)

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, “Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology,” J. Biomed. Mater. Res. 78A(1), 194–204 (2006).
[CrossRef]

J. Clin. Invest. (1)

L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, and C. M. Giachelli, “The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro,” J. Clin. Invest. 95(2), 713–724 (1995).
[CrossRef] [PubMed]

J. Fluoresc. (1)

K. Aslan, S. N. Malyn, and C. D. Geddes, “Metal-enhanced fluorescence from gold surfaces: angular dependent emission,” J. Fluoresc. 17(1), 7–13 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol., A (1)

D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol., A 47(1), 1–29 (1989).
[CrossRef]

J. Phys. Chem. (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

J. Phys. Chem. B (1)

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Langmuir (1)

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Macromolecules (1)

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Nano Lett. (1)

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Plasmonic engineering of singlet oxygen generation,” Proc. Natl. Acad. Sci. U.S.A. 105(6), 1798–1802 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) UV/Vis spectra of AuNRs in water and fabrication solution with 50 mg/ml BSA. (b) UV/Vis spectra of BSA, aqueous RB, and Tween 20.

Fig. 2
Fig. 2

TPEF images of freeform crosslinked BSA microdevices: (a) Cylinder stained with Texas red and (b) helix stained with RB.

Fig. 3
Fig. 3

Bright-field images of crosslinked BSA microstructures at different fabrication laser powers with (top) and without (bottom) AuNRs with longitudinal plasmon resonance of 850 nm assisted. The fabrication laser power varied from 0.40 mW to 1.07 mW (left to right).

Fig. 4
Fig. 4

TPEF and TPL spectra of RB and AuNR solutions, respectively.

Fig. 5
Fig. 5

An AuNRs-doped 3D woodpile BSA microstructure imaged with (a) 3D TPL, (b) 2D bright field, and (c) SEM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ η 2 λ τ F ,

Metrics