Abstract

A band-pass filter based on mechanically-induced multi-π-shifted long-period fiber gratings is proposed. The pass band width of the filter depends on the number N of the sub-gratings divided by π-shifts in the long-period fiber grating. The depth of the two lateral rejection bands can be changed by the amount of pressure applied to the fiber. This paper demonstrates a multi-π-shifted long-period fiber grating created by pressing a fiber between two periodically grooved plates. For N = 7 and LP12 mode coupling, the extinction ratio is 22.22 dB, and the pass band loss is 0.85 dB. For LP12 mode coupling, the pass band width varies from 14.23 nm to 39.31 nm when N increases from 2 to 10.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [CrossRef]
  2. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
    [CrossRef]
  3. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
    [CrossRef]
  4. J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fiber gratings,” Electron. Lett. 34(11), 1132–1133 (1998).
    [CrossRef]
  5. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
    [CrossRef] [PubMed]
  6. O. Deparis, R. Kiyan, O. Pottiez, M. Blondel, I. G. Korolev, S. A. Vasiliev, and E. M. Dianov, “Bandpass filters based on π-shifted long-period fiber gratings for actively mode-locked erbium fiber lasers,” Opt. Lett. 26(16), 1239–1241 (2001).
    [CrossRef]
  7. M. Kulishov, D. Krcmarík, and R. Slavík, “Design of terahertz-bandwidth arbitrary-order temporal differentiators based on long-period fiber gratings,” Opt. Lett. 32(20), 2978–2980 (2007).
    [CrossRef] [PubMed]
  8. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45(21), 5066–5072 (2006).
    [CrossRef] [PubMed]
  9. Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009).
    [CrossRef]
  10. G. Humbert and A. Malki, “High performance bandpass filters based on electric arc-induced π-shifted long-period fiber gratings,” Electron. Lett. 39(21), 1506–1507 (2003).
    [CrossRef]
  11. M. Kulishov and X. Daxhelet, “Reconfigurable π-shifted and Mach–Zehnder bandpass filters on the basis of electrooptically induced long-period gratings in a planar waveguide,” J. Lightwave Technol. 21(3), 854–861 (2003).
    [CrossRef]
  12. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25(10), 710–712 (2000).
    [CrossRef]
  13. H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009).
    [CrossRef]
  14. F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
    [CrossRef]
  15. L. R. Chen, “Design of flat top bandpass filters based on symmetric multiple phaseshifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).
  16. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Opt. Lett. 12(4), 281–283 (1987).
    [CrossRef] [PubMed]
  17. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976).
    [CrossRef]
  18. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28(9), 686–688 (2003).
    [CrossRef] [PubMed]
  19. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
    [CrossRef]
  20. J. Y. Cho and K. S. Lee, “A birefringence compensation method for mechanically induced long-period fiber gratings,” Opt. Commun. 213(4-6), 281–284 (2002).
    [CrossRef]
  21. S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett. 30(21), 2864–2866 (2005).
    [CrossRef] [PubMed]

2009

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009).
[CrossRef]

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009).
[CrossRef]

2007

2006

2005

2004

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

2003

G. Humbert and A. Malki, “High performance bandpass filters based on electric arc-induced π-shifted long-period fiber gratings,” Electron. Lett. 39(21), 1506–1507 (2003).
[CrossRef]

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28(9), 686–688 (2003).
[CrossRef] [PubMed]

M. Kulishov and X. Daxhelet, “Reconfigurable π-shifted and Mach–Zehnder bandpass filters on the basis of electrooptically induced long-period gratings in a planar waveguide,” J. Lightwave Technol. 21(3), 854–861 (2003).
[CrossRef]

2002

S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
[CrossRef]

L. R. Chen, “Design of flat top bandpass filters based on symmetric multiple phaseshifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).

J. Y. Cho and K. S. Lee, “A birefringence compensation method for mechanically induced long-period fiber gratings,” Opt. Commun. 213(4-6), 281–284 (2002).
[CrossRef]

2001

2000

1999

1998

J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fiber gratings,” Electron. Lett. 34(11), 1132–1133 (1998).
[CrossRef]

1996

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

1987

1976

Bae, J.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Bae, J. K.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Bhatia, V.

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Blake, J. N.

Blondel, M.

Chan, F. Y. M.

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[CrossRef]

Chen, H. F.

J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fiber gratings,” Electron. Lett. 34(11), 1132–1133 (1998).
[CrossRef]

Chen, L. R.

L. R. Chen, “Design of flat top bandpass filters based on symmetric multiple phaseshifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).

Chiang, K. S.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009).
[CrossRef]

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009).
[CrossRef]

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[CrossRef]

Cho, J. Y.

J. Y. Cho and K. S. Lee, “A birefringence compensation method for mechanically induced long-period fiber gratings,” Opt. Commun. 213(4-6), 281–284 (2002).
[CrossRef]

Daxhelet, X.

Deparis, O.

Dianov, E. M.

Digonnet, M. J. F.

Dimarcello, F. V.

Engan, H. E.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Fabris, J. L.

Falate, R.

Fleming, J.

Frazão, O.

Ghalmi, S.

Golowich, S.

Grubsky, V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Gu, Y.

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009).
[CrossRef]

Humbert, G.

G. Humbert and A. Malki, “High performance bandpass filters based on electric arc-induced π-shifted long-period fiber gratings,” Electron. Lett. 39(21), 1506–1507 (2003).
[CrossRef]

Jeong, J.-M.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Ke, H.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009).
[CrossRef]

Kim, B. Y.

Kim, J. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Kim, S. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Kino, G. S.

Kiyan, R.

Korolev, I. G.

Krcmarík, D.

Kulishov, M.

Lee, K. S.

J. Y. Cho and K. S. Lee, “A birefringence compensation method for mechanically induced long-period fiber gratings,” Opt. Commun. 213(4-6), 281–284 (2002).
[CrossRef]

Lee, S. B.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Malki, A.

G. Humbert and A. Malki, “High performance bandpass filters based on electric arc-induced π-shifted long-period fiber gratings,” Electron. Lett. 39(21), 1506–1507 (2003).
[CrossRef]

Marcuse, D.

Monberg, E.

Peng, J. H.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009).
[CrossRef]

Plant, D. V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Pottiez, O.

Qian, J. R.

J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fiber gratings,” Electron. Lett. 34(11), 1132–1133 (1998).
[CrossRef]

Ramachandran, S.

Rao, Y. J.

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009).
[CrossRef]

Rego, G.

Santos, J. L.

Savin, S.

Schwartz, J.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Slavík, R.

Vasiliev, S. A.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Wang, Z.

Wisk, P.

Yan, M.

Yan, M. F.

Appl. Opt.

Electron. Lett.

J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fiber gratings,” Electron. Lett. 34(11), 1132–1133 (1998).
[CrossRef]

G. Humbert and A. Malki, “High performance bandpass filters based on electric arc-induced π-shifted long-period fiber gratings,” Electron. Lett. 39(21), 1506–1507 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009).
[CrossRef]

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003).
[CrossRef]

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009).
[CrossRef]

J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

M. Kulishov and X. Daxhelet, “Reconfigurable π-shifted and Mach–Zehnder bandpass filters on the basis of electrooptically induced long-period gratings in a planar waveguide,” J. Lightwave Technol. 21(3), 854–861 (2003).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

J. Y. Cho and K. S. Lee, “A birefringence compensation method for mechanically induced long-period fiber gratings,” Opt. Commun. 213(4-6), 281–284 (2002).
[CrossRef]

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[CrossRef]

L. R. Chen, “Design of flat top bandpass filters based on symmetric multiple phaseshifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of π-shifted MI-LPFG. P: polarizer, PC: polarization controller.

Fig. 2
Fig. 2

Transmission of the MI-LPFG with the grating pitch of 600µm.

Fig. 3
Fig. 3

Relation between λres and the grating pitch.

Fig. 4
Fig. 4

Transmission spectra of the π-shifted MI-LPFG for N = 7 under increasing pressure of (a) P1-P4, (b) P5.

Fig. 5
Fig. 5

Relation between the pass band width Δλ and the sub-grating number N.

Fig. 6
Fig. 6

Relation between the central wavelength λc and the sub-grating number N.

Tables (1)

Tables Icon

Table 1 π-shifted MI-LPFGs with different parameters

Metrics