Abstract

A single passband microwave photonic signal processor based on continuous time impulse response that has high resolution, multiple-taps and baseband-free response as well as exhibiting a square-top passband and tunability, is presented. The design and synthesis of the frequency response are based on a full systematic model for single passband microwave photonic filters to account for arbitrary spectrum slice shapes, which for the first time investigates the combined effects from both the dispersion-induced carrier suppression effect and the RF decay effect due to the spectrum slice width, to enable the optimum design to be realized by utilizing the carrier suppression effect to improve the filter performance. Experimental results demonstrate a high order microwave filter showing high resolution single passband filtering as well as exhibiting reconfiguration, square-top passband and tunability, for the first time to our best knowledge.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  4. S. J. Xiao and A. M. Weiner, “Coherent photonic processing of microwave signals using spatial light modulators: programmable amplitude filters,” J. Lightwave Technol. 24(7), 2523–2529 (2006).
    [CrossRef]
  5. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32(1), 23–25 (2007).
    [CrossRef]
  6. X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
    [CrossRef]
  7. A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing,” Electron. Lett. 32(4), 390–391 (1996).
    [CrossRef]
  8. D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guid. Wave Lett. 6(2), 103–105 (1996).
    [CrossRef]
  9. X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
    [CrossRef]
  10. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [CrossRef]
  11. J. Mora, L. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
    [CrossRef]
  12. V. Torres-Company, J. Lancis, P. Andrés, and L. Chen, “Reconfigurable RF-waveform generation based on incoherent-filter design,” J. Lightwave Technol. 26(15), 2476–2483 (2008).
    [CrossRef]
  13. V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).
  14. J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol. 26(15), 2619–2628 (2008).
    [CrossRef]
  15. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
  16. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
    [CrossRef]
  17. C. Pulikkaseril, “Filter Bandwidth Definition of the WaveShaper S-series Programmable Processor,” Finisar product whitepaper.

2009 (2)

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

2008 (4)

2007 (1)

2006 (5)

1998 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
[CrossRef]

1996 (2)

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guid. Wave Lett. 6(2), 103–105 (1996).
[CrossRef]

Andres, M. V.

Andrés, P.

V. Torres-Company, J. Lancis, P. Andrés, and L. Chen, “Reconfigurable RF-waveform generation based on incoherent-filter design,” J. Lightwave Technol. 26(15), 2476–2483 (2008).
[CrossRef]

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

Capmany, J.

Chang, Y. M.

Chen, L.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
[CrossRef]

Cruz, J. L.

Davies, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

Diez, A.

Foord, A. P.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
[CrossRef]

Greenhalgh, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guid. Wave Lett. 6(2), 103–105 (1996).
[CrossRef]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
[CrossRef]

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

V. Torres-Company, J. Lancis, P. Andrés, and L. Chen, “Reconfigurable RF-waveform generation based on incoherent-filter design,” J. Lightwave Technol. 26(15), 2476–2483 (2008).
[CrossRef]

Lee, J. H.

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
[CrossRef]

Martí, J.

Minasian, R. A.

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[CrossRef]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guid. Wave Lett. 6(2), 103–105 (1996).
[CrossRef]

Mora, J.

Ortega, B.

Pastor, D.

Piqueras, M. A.

Torres-Company, V.

V. Torres-Company, J. Lancis, P. Andrés, and L. Chen, “Reconfigurable RF-waveform generation based on incoherent-filter design,” J. Lightwave Technol. 26(15), 2476–2483 (2008).
[CrossRef]

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

Vidal, B.

Weiner, A. M.

Xiao, S. J.

Yao, J. P.

Yi, X.

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[CrossRef]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

Electron. Lett. (3)

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[CrossRef]

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett. 34(2), 209–211 (1998).
[CrossRef]

IEEE Microw. Guid. Wave Lett. (1)

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guid. Wave Lett. 6(2), 103–105 (1996).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Commun. (1)

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

Opt. Lett. (1)

Other (2)

C. Pulikkaseril, “Filter Bandwidth Definition of the WaveShaper S-series Programmable Processor,” Finisar product whitepaper.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of single passband microwave photonics filters. (a) Discrete time impulse response. (b) Frequency response. (c) Low pass filter: time domain, s(t). (d) Low pass filter: frequency domain, S(fm ). (e) Modified impulse response. (f) Modified frequency response.

Fig. 2
Fig. 2

Schematic of the true single passband microwave photonic filter.

Fig. 3
Fig. 3

Biploar filter coefficients design. a) Uniform. b) Gaussian. c) Flat-top. Corresponding frequency response. d) Uniform. e) Gaussian. f) Flat-top.

Fig. 4
Fig. 4

Four different optical spectrum-slice widths corresponding to a bandwidth (B) of (a) 40GHz (b) 60GHz (c) 80GHz (d) 100GHz.

Fig. 5
Fig. 5

RF low-pass filter characteristic, including both the RF fading effect due to the source spectral slice width and the carrier suppression effect, for four different optical spectrum-slice widths of 40GHz, 60GHz, 80GHz, and 100GHz.

Fig. 6
Fig. 6

Suppression characteristics at different spectral splice bandwidths for the first (desired) passband and the next second to fourth (undesired) passbands (a) without carrier suppression effect and (b) with carrier suppression effect.

Fig. 7
Fig. 7

Passband suppressions due to the dispersion-induced RF low-pass characteristic for spectrum sliced bandwidths (B) of: (a) 40GHz, (b) 49GHz, (c) 65GHz and (d) 80GHz.

Fig. 8
Fig. 8

Spectrum slice bandwidth of (a) 80GHz (b) the corresponding RF low-pass characteristic curve. Spectrum slice bandwidth of (c) 100GHz (d) the corresponding RF low-pass characteristic curve.

Fig. 9
Fig. 9

53-tap high-order microwave photonic filters with (a) uniform bipolar tap profile and (b) the corresponding measured RF response; (c) Gaussian weighted bipolar tap profile and (d) the corresponding measured RF response; (e) bipolar filter coefficients that result in a flat-top filter response and (f) the corresponding measured RF response.

Fig. 10
Fig. 10

Measured frequency response (1.5-4GHz span). (a) Uniform weighted bipolar coefficients (b) Gaussian weighted bipolar coefficients. (c) Flat-top weighted bipolar coefficients

Fig. 11
Fig. 11

Measured RF responses of the flat-top microwave photonic filter showing tunability.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = n = 0 N 1 h n δ ( t n T )
H ( f m ) = n = 0 N 1 h n exp ( j 2 π f m n T )
H ( f m ) ¯ = H ( f m ) S ( f m )
h ( t ) ¯ = n = 0 N 1 h n δ ( t n T ) s ( t ) = n = 0 N 1 h n s ( t n T )
H ( f m ) = n = 0 N 1 h n exp ( j 2 π f m n T ) cos ( π f m 2 D ) M ( f m )
M ( f m ) = f f + ϕ o ( f ) exp ( j 2 π f m f D ) d f = ( 1 D ) t t + ϕ o ( t / D ) exp ( j 2 π f m t ) d t
S ( f m ) = cos ( π f m 2 D ) M ( f m )
ϕ o ( f ) = [ erf ( ( B 2 f ) 8.41 × 10 9 ) erf ( ( B 2 f ) 8.41 × 10 9 ) ] 2
S k = cos ( π [ ( k 0.5 ) FSR ] 2 D ) M ( ( k 0.5 ) FSR )

Metrics