Abstract

A new and complete methodology of monofocal intraocular lens (IOL) design is presented aiming at isoplanatism, i.e. IOLs that provide the eye with optimized optical quality over a wide field of view (typically in a range of ten degrees). The methodology uses a merit function considering dimensional and biomechanical constraints, and a geometrical optical quality metric that is evaluated simultaneously at different field angles. As an example, we present new isoplanatic designs based on different commercial IOL platforms. Aspheric isoplanatic designs improve peripheral quality over current aspheric IOLs. Also, isoplanatic designs provide more stable optical quality across the field and across pupil diameter.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8576 .
    [CrossRef] [PubMed]
  2. S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations ” US Patent 6,609,793.
  3. M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.
  4. G. E. Altmann and G. Altmann, “Aspheric lens and lens family” WO Patent 2005/203619.
  5. R. B. Rabbetts, Bennett & Rabbetts' clinical visual optics (Elsevier/Butterworth Heinemann, Edinburgh; New York, 2007).
  6. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [CrossRef] [PubMed]
  7. W. N. Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
    [CrossRef] [PubMed]
  8. R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15(9), 2522–2529 (1998).
    [CrossRef]
  9. G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
    [CrossRef] [PubMed]
  10. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007).
    [CrossRef] [PubMed]
  11. D. A. Atchison, “3rd-Order Aberrations Of Pseudophakic Eyes,” Oph. Phy. Opt 9(2), 205–211 (1989).
    [CrossRef]
  12. D. A. Atchison, “Optical design of intraocular lenses. II. Off-axis performance,” Optom. Vis. Sci. 66(9), 579–590 (1989).
    [CrossRef] [PubMed]
  13. S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004).
    [CrossRef] [PubMed]
  14. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
    [CrossRef] [PubMed]
  15. P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
    [CrossRef] [PubMed]
  16. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
    [CrossRef] [PubMed]
  17. I. Gontijo, A. Ossipov, and T. R. Paul, “Optimizing intraocular lens” WO Patent 2009/142961.
  18. D. T. Azar, Intraocular lenses in cataract and refractive surgery (Saunders, Philadelphia, 2001).
  19. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
    [CrossRef] [PubMed]
  20. C. W. Lu and G. Smith, “The Aspherizing Of Intraocular Lenses,” Oph. Phy. Opt. 10(1), 54–66 (1990).
    [CrossRef]
  21. C. Pagnoulle, S. Nolet De Brauwere Van, C. R. M. Pagnoulle, and S. T. Nolet De Brauwere Van, “Polymer composition for an intraocular lens” WO Patent 2006/063994.
  22. S. R. Nanushyan, I. Valunin, and E. J. Alexeeva, “High refractive index silicone for use in intraocular lens” US Patent 6432137.
  23. C. Freeman, D. L. Jinkerson, M. Karakelle, A. R. Leboeuf, and A. Leboeuf, “High refractive index ophthalmic device materials” WO Patent WO9953347.
  24. S. Q. Zhou, J. C. Sy, M. A. Berteig, and T. P. Richards, “High refractive index silicone compositions” US Patent 5444106.
  25. S. Barbero, S. Marcos, C. Dorronsoro, J. Montejo, and P. Salazar, “Procedimiento para elaborar una lente intraocular monofocal asferica isoplanática y lente obtenida empleando dicho procedimiento,” Spanish patent application P201030855.
  26. S. Barbero, “Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film,” J. Opt. Soc. Am. A 23(7), 1578–1585 (2006).
    [CrossRef]
  27. K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
    [CrossRef] [PubMed]
  28. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
    [CrossRef] [PubMed]
  29. T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
    [CrossRef] [PubMed]
  30. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
    [CrossRef] [PubMed]
  31. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
    [CrossRef] [PubMed]
  32. T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg. 32(3), 419–424 (2006).
    [CrossRef] [PubMed]
  33. G. W. Forbes, “Optical system assessment for design: numerical ray tracing in the Gaussian pupil,” J. Opt. Soc. Am. A 5(11), 1943–1956 (1988).
    [CrossRef]
  34. D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66(8), 492–506 (1989).
    [CrossRef] [PubMed]
  35. S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
    [CrossRef] [PubMed]
  36. X. Hong, J. Xie, and et. al., “Intraocular lens,” (2006).
  37. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
    [CrossRef] [PubMed]
  38. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
    [CrossRef] [PubMed]
  39. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004).
    [CrossRef] [PubMed]
  40. S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
    [PubMed]
  41. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
    [CrossRef]
  42. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [CrossRef]
  43. T. Olsen, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 18(2), 125–129 (1992).
    [PubMed]
  44. O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985).
    [PubMed]
  45. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8019 .
    [CrossRef] [PubMed]
  46. M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
    [CrossRef] [PubMed]
  47. J. Kumler, “Designing and specifying aspheres for manufacturability,” in Current Developments in Lens Design and Optical Engineering VI(SPIE, San Diego, CA, USA, 2005), pp. 58740C–58749.
  48. A. Y. Anis, “Flexible posterior chanber lens,” US Patent 4880427.
  49. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  50. A. Patz, “Photocoagulation of retinal, vascular, and macular diseases through intraocular lenses,” Ophthalmology 88(5), 398–406 (1981).
    [PubMed]
  51. R. M. Kershner, “Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation,” J. Cataract Refract. Surg. 29(9), 1684–1694 (2003).
    [CrossRef] [PubMed]

2010 (1)

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

2009 (2)

W. N. Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

2007 (4)

2006 (5)

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg. 32(3), 419–424 (2006).
[CrossRef] [PubMed]

S. Barbero, “Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film,” J. Opt. Soc. Am. A 23(7), 1578–1585 (2006).
[CrossRef]

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8019 .
[CrossRef] [PubMed]

2005 (3)

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

2004 (4)

S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004).
[CrossRef] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004).
[CrossRef] [PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

2003 (3)

R. M. Kershner, “Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation,” J. Cataract Refract. Surg. 29(9), 1684–1694 (2003).
[CrossRef] [PubMed]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

2001 (2)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1994 (1)

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[CrossRef] [PubMed]

1992 (1)

T. Olsen, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 18(2), 125–129 (1992).
[PubMed]

1991 (1)

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[CrossRef] [PubMed]

1990 (1)

C. W. Lu and G. Smith, “The Aspherizing Of Intraocular Lenses,” Oph. Phy. Opt. 10(1), 54–66 (1990).
[CrossRef]

1989 (3)

D. A. Atchison, “3rd-Order Aberrations Of Pseudophakic Eyes,” Oph. Phy. Opt 9(2), 205–211 (1989).
[CrossRef]

D. A. Atchison, “Optical design of intraocular lenses. II. Off-axis performance,” Optom. Vis. Sci. 66(9), 579–590 (1989).
[CrossRef] [PubMed]

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66(8), 492–506 (1989).
[CrossRef] [PubMed]

1988 (1)

1985 (1)

O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985).
[PubMed]

1981 (1)

A. Patz, “Photocoagulation of retinal, vascular, and macular diseases through intraocular lenses,” Ophthalmology 88(5), 398–406 (1981).
[PubMed]

Altmann, G. E.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Aoshima, S.

S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004).
[CrossRef] [PubMed]

Applegate, R. A.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004).
[CrossRef] [PubMed]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Artal, P.

Ashman, R.

Atchison, D. A.

W. N. Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

D. A. Atchison, “3rd-Order Aberrations Of Pseudophakic Eyes,” Oph. Phy. Opt 9(2), 205–211 (1989).
[CrossRef]

D. A. Atchison, “Optical design of intraocular lenses. II. Off-axis performance,” Optom. Vis. Sci. 66(9), 579–590 (1989).
[CrossRef] [PubMed]

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66(8), 492–506 (1989).
[CrossRef] [PubMed]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

Barbero, S.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8576 .
[CrossRef] [PubMed]

S. Barbero, “Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film,” J. Opt. Soc. Am. A 23(7), 1578–1585 (2006).
[CrossRef]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

Bedggood, P. A.

Boyce, J.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

Brennan, N. A.

Burgi, P.

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

Burns, S. A.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

Cano, D.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

de Gracia, P.

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

Dorronsoro, C.

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15(9), 2522–2529 (1998).
[CrossRef]

Drexler, W.

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

Dubbelman, M.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Findl, O.

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

Forbes, G. W.

Gambra, E.

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

Grosvenor, T.

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[CrossRef] [PubMed]

Hernández, M.

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

Jiménez-Alfaro, I.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

Jones, C. E.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

Kershner, R. M.

R. M. Kershner, “Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation,” J. Cataract Refract. Surg. 29(9), 1684–1694 (2003).
[CrossRef] [PubMed]

Köppl, C.

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

Kriechbaum, K.

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

Lane, S. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

Liou, H. L.

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

Lu, C. W.

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[CrossRef] [PubMed]

C. W. Lu and G. Smith, “The Aspherizing Of Intraocular Lenses,” Oph. Phy. Opt. 10(1), 54–66 (1990).
[CrossRef]

Marcos, S.

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
[CrossRef] [PubMed]

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express 15(14), 8576–8591 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8576 .
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

Marin, G.

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004).
[CrossRef] [PubMed]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Marshall, J.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

McLellan, J. S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

Metha, A. B.

Milios, G. S.

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

Minakata, A.

S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004).
[CrossRef] [PubMed]

Moreno, E.

Nagata, T.

S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004).
[CrossRef] [PubMed]

Nanavaty, M. A.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15(9), 2522–2529 (1998).
[CrossRef]

Nichamin, L. D.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Olsen, T.

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg. 32(3), 419–424 (2006).
[CrossRef] [PubMed]

T. Olsen, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 18(2), 125–129 (1992).
[PubMed]

Orchowski, M. W.

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

Pankratov, M. M.

O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985).
[PubMed]

Patz, A.

A. Patz, “Photocoagulation of retinal, vascular, and macular diseases through intraocular lenses,” Ophthalmology 88(5), 398–406 (1981).
[PubMed]

Pepose, J. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Piers, P.

Pomerantzeff, O.

O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985).
[PubMed]

Pope, J. M.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

Preussner, P. R.

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

Prieto, P. M.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

Pritchard, N.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

Ramos, R.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Rosales, P.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 .
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

Saha, S.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

Sarver, E. J.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Schmid, K. L.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

Schwarte, E.

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

Scott, D. H.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

Scott, R.

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[CrossRef] [PubMed]

Smith, G.

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8019 .
[CrossRef] [PubMed]

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[CrossRef] [PubMed]

C. W. Lu and G. Smith, “The Aspherizing Of Intraocular Lenses,” Oph. Phy. Opt. 10(1), 54–66 (1990).
[CrossRef]

Spalton, D. J.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

Tabernero, J.

Thibos, L. N.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Vaughan, M.

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

Wahl, J.

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

Wang, G. J.

O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[CrossRef] [PubMed]

J. Am. Intraocul. Implant Soc. (1)

O. Pomerantzeff, M. M. Pankratov, and G. J. Wang, “Calculation of an IOL from the wide-angle optical model of the eye,” J. Am. Intraocul. Implant Soc. 11(1), 37–43 (1985).
[PubMed]

J. Cataract Refract. Surg. (10)

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refract. Surg. 35(4), 663–671 (2009).
[CrossRef] [PubMed]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg. 32(3), 419–424 (2006).
[CrossRef] [PubMed]

S. S. Lane, P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte, “Comparison of the biomechanical behavior of foldable intraocular lenses,” J. Cataract Refract. Surg. 30(11), 2397–2402 (2004).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[CrossRef] [PubMed]

S. Aoshima, T. Nagata, and A. Minakata, “Optical characteristics of oblique incident rays in pseudophakic eyes,” J. Cataract Refract. Surg. 30(2), 471–477 (2004).
[CrossRef] [PubMed]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

K. Kriechbaum, O. Findl, P. R. Preussner, C. Köppl, J. Wahl, and W. Drexler, “Determining postoperative anterior chamber depth,” J. Cataract Refract. Surg. 29(11), 2122–2126 (2003).
[CrossRef] [PubMed]

T. Olsen, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 18(2), 125–129 (1992).
[PubMed]

R. M. Kershner, “Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation,” J. Cataract Refract. Surg. 29(9), 1684–1694 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (1)

S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21(3), 223–235 (2005).
[PubMed]

J. Vis. (2)

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 322–328 (2004).
[CrossRef] [PubMed]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 288–298 (2004).
[CrossRef] [PubMed]

Oph. Phy. Opt (1)

D. A. Atchison, “3rd-Order Aberrations Of Pseudophakic Eyes,” Oph. Phy. Opt 9(2), 205–211 (1989).
[CrossRef]

Oph. Phy. Opt. (1)

C. W. Lu and G. Smith, “The Aspherizing Of Intraocular Lenses,” Oph. Phy. Opt. 10(1), 54–66 (1990).
[CrossRef]

Ophthalmology (1)

A. Patz, “Photocoagulation of retinal, vascular, and macular diseases through intraocular lenses,” Ophthalmology 88(5), 398–406 (1981).
[PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optom. Vis. Sci. (4)

G. Smith and C. W. Lu, “Peripheral power errors and astigmatism of eyes corrected with intraocular lenses,” Optom. Vis. Sci. 68(1), 12–21 (1991).
[CrossRef] [PubMed]

D. A. Atchison, “Optical design of intraocular lenses. II. Off-axis performance,” Optom. Vis. Sci. 66(9), 579–590 (1989).
[CrossRef] [PubMed]

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[CrossRef] [PubMed]

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vis. Sci. 66(8), 492–506 (1989).
[CrossRef] [PubMed]

Vision Res. (7)

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[CrossRef]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

W. N. Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

P. de Gracia, C. Dorronsoro, E. Gambra, G. Marin, M. Hernández, and S. Marcos, “Combining coma with astigmatism can improve retinal image over astigmatism alone,” Vision Res. 50(19), 2008–2014 (2010).
[CrossRef] [PubMed]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Other (14)

I. Gontijo, A. Ossipov, and T. R. Paul, “Optimizing intraocular lens” WO Patent 2009/142961.

D. T. Azar, Intraocular lenses in cataract and refractive surgery (Saunders, Philadelphia, 2001).

C. Pagnoulle, S. Nolet De Brauwere Van, C. R. M. Pagnoulle, and S. T. Nolet De Brauwere Van, “Polymer composition for an intraocular lens” WO Patent 2006/063994.

S. R. Nanushyan, I. Valunin, and E. J. Alexeeva, “High refractive index silicone for use in intraocular lens” US Patent 6432137.

C. Freeman, D. L. Jinkerson, M. Karakelle, A. R. Leboeuf, and A. Leboeuf, “High refractive index ophthalmic device materials” WO Patent WO9953347.

S. Q. Zhou, J. C. Sy, M. A. Berteig, and T. P. Richards, “High refractive index silicone compositions” US Patent 5444106.

S. Barbero, S. Marcos, C. Dorronsoro, J. Montejo, and P. Salazar, “Procedimiento para elaborar una lente intraocular monofocal asferica isoplanática y lente obtenida empleando dicho procedimiento,” Spanish patent application P201030855.

S. Norrby, P. Artal, P. A. Piers, and M. Van der Mooren, Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations ” US Patent 6,609,793.

M. Gerlach and C. Lesage, “Aspheric intraocular lens and method for designing such IOL” WO Patent 2007/128423.

G. E. Altmann and G. Altmann, “Aspheric lens and lens family” WO Patent 2005/203619.

R. B. Rabbetts, Bennett & Rabbetts' clinical visual optics (Elsevier/Butterworth Heinemann, Edinburgh; New York, 2007).

J. Kumler, “Designing and specifying aspheres for manufacturability,” in Current Developments in Lens Design and Optical Engineering VI(SPIE, San Diego, CA, USA, 2005), pp. 58740C–58749.

A. Y. Anis, “Flexible posterior chanber lens,” US Patent 4880427.

X. Hong, J. Xie, and et. al., “Intraocular lens,” (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Surface profiles of 22 D commercial lenses (Table 2): (a) CeeOn (Pharmacia) (b) Tecnis (Pharmacia) (c) LI61U (B&L) (d) SofPort (B&L) (e) SA60AT (Alcon) (f) SN60WF (Alcon) (g) XL-Stabi-ZO (Zeiss). Anterior surfaces are shown in the left.

Fig. 2
Fig. 2

Surfaces profiles of new 22 D isoplanatic lenses (Table 3) for the Pharmacia platform: (a) spherical (b) conic (c) aspheric, B&L platform (d) spherical (e) conic (f) aspheric, Alcon platform: (g) spherical (h) conic (i) aspheric and Carl Zeiss platform (j) spherical (k) conic (l) aspheric.

Fig. 3
Fig. 3

RMS (microns), as a function of the object field angle (°), for the 6 different eye models where the 22 D Tecnis IOL was implanted. The average and standard deviation are plotted (black lines).

Fig. 4
Fig. 4

RMS as a function of objective Acrysof-IQ field angle for the commercial IOL designs (averaged across 6 eyes). Error bars stand for standard deviations.

Fig. 5
Fig. 5

FOVU and PSS of commercial designs: spherical (dark blue bars) and aspheric (light blue bars) and new isoplanatic designs: spherical (green bars), conic (orange bars) and aspheric (brown bars). Error bars stand for standard deviations.

Fig. 6
Fig. 6

RMS as a function of the object field angle for the new isoplanatic IOL designs of the Pharmacia b) Alcon c) B&L and d) Zeiss IOL platforms. The spherical, conic and aspheric designs are plotted with red, black and blue lines respectively. Results are averaged across six model eyes. Error bars stand for standard deviations.

Fig. 7
Fig. 7

RMS as a function of objective field angle for the new aspheric isoplanatic (red line) and commercial (black line), IOL designs of the Pharmacia b) Alcon c) B&L and d) Zeiss IOL platforms. Results are average across 6 eyes. Error bars stand for standard deviations.

Fig. 8
Fig. 8

(a) RMS and (b) Strehl ratio as a function of objective field angle for the new aspheric isoplanatic IOL designs of the Pharmacia (red line), Alcon (green line), B&L (blue line) and Zeiss (cyan line) IOL platforms. Error bars stand for standard deviations.

Fig. 9
Fig. 9

RMS as a function of the object field angle of the SN60WF19.5 D IOL (black line) compared with the new isoplanatic Alcon IOL (red line) for two fully anatomical pseudoaphakic eye models: (a)-(b) model #1, OD (c)-(d) model #2, OS; (a) and (c) Horizontal meridian. (b) and (d) Vertical Meridian. Positive horizontal coordinates stand for nasal in right eyes, and temporal in left eyes, and viceversa for negative horizontal coordinates. Positive vertical coordinates stand for superior and negative for inferior.

Tables (3)

Tables Icon

Table 1 Parameters of a generic pseudoaphakic eye model.

Tables Icon

Table 2 IOL parameters of commercial lenses.

Tables Icon

Table 3 IOL parameters of the new isoplanatic lenses for the different platforms.

Metrics