Abstract

In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).
  2. C. Lavigne, A. Roblin, and P. Chervet, “Solar glint from oriented crystals in cirrus clouds,” Appl. Opt. 47(33), 6266–6276 (2008).
    [CrossRef] [PubMed]
  3. B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18, 866–870 (2005).
  4. C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals,” J. Appl. Meteorol. 17(8), 1220–1224 (1978).
    [CrossRef]
  5. V. Noel and K. Sassen, “Study of ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44(5), 653–664 (2005).
    [CrossRef]
  6. W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41(30), 6470–6476 (2002).
    [CrossRef] [PubMed]
  7. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41(21), 4245–4257 (2002).
    [CrossRef] [PubMed]
  8. Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
    [CrossRef]
  9. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
    [CrossRef]
  10. H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16(6), 3931–3948 (2008).
    [CrossRef] [PubMed]
  11. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43(36), 6620–6628 (2004).
    [CrossRef]
  12. H. C. van de Hulst, Light scattering by small particles (Wiley, 1957).
  13. C. R. Hu, G. W. Kattawar, M. E. Parkin, and P. Herb, “Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer,” Appl. Opt. 26(19), 4159–4173 (1987).
    [CrossRef] [PubMed]
  14. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20(12), 1356–1358 (1995).
    [CrossRef] [PubMed]
  15. C. J. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, “Novel polarization-sensitive micropulse lidar measurement technique,” Opt. Express 15(6), 2785–2790 (2007).
    [CrossRef] [PubMed]
  16. G. G. Gimmestad, “Reexamination of depolarization in lidar measurements,” Appl. Opt. 47(21), 3795–3802 (2008).
    [CrossRef] [PubMed]
  17. G. Roy and N. Roy, “Relation between circular and linear depolarization ratios under multiple-scattering conditions,” Appl. Opt. 47(35), 6563–6579 (2008).
    [CrossRef] [PubMed]
  18. M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt. 45(20), 4878–4887 (2006).
    [CrossRef] [PubMed]
  19. Yu. Balin, B. Kaul, G. Kokhanenko, and D. Winker, “Application of circularly polarized laser radiation for sensing of crystal clouds,” Opt. Express 17(8), 6849–6859 (2009).
    [CrossRef] [PubMed]
  20. http://weather.uwyo.edu/upperair/sounding.html .

2009

2008

2007

2006

M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt. 45(20), 4878–4887 (2006).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
[CrossRef]

2005

B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18, 866–870 (2005).

V. Noel and K. Sassen, “Study of ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44(5), 653–664 (2005).
[CrossRef]

2004

2002

2001

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[CrossRef]

1995

1987

1986

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

1978

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals,” J. Appl. Meteorol. 17(8), 1220–1224 (1978).
[CrossRef]

Abshire, N. L.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals,” J. Appl. Meteorol. 17(8), 1220–1224 (1978).
[CrossRef]

Balin, Yu.

Baum, B. A.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
[CrossRef]

Benson, S.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[CrossRef]

Castagnoli, F.

Chen, W. N.

Chepfer, H.

Chervet, P.

Chiang, C. W.

Cho, H. M.

Del Guasta, M.

Delaval, A.

Flamant, P. H.

Flynn, C. J.

Gimmestad, G. G.

Herb, P.

Hovenier, J. W.

Hu, C. R.

Hu, Y.

Hu, Y. X.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
[CrossRef]

Kattawar, G. W.

Kaul, B.

Kaul, B. V.

B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18, 866–870 (2005).

B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43(36), 6620–6628 (2004).
[CrossRef]

Kokhanenko, G.

Lavigne, C.

Ledanois, G.

Liou, K. N.

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

Mathur, S.

McNice, G. T.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals,” J. Appl. Meteorol. 17(8), 1220–1224 (1978).
[CrossRef]

Mendoza, A.

Minnis, P.

Mishchenko, M. I.

Morandi, M.

Nasiri, S. L.

Nee, J. B.

Noel, V.

V. Noel and K. Sassen, “Study of ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44(5), 653–664 (2005).
[CrossRef]

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41(21), 4245–4257 (2002).
[CrossRef] [PubMed]

Parkin, M. E.

Platt, C. M. R.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals,” J. Appl. Meteorol. 17(8), 1220–1224 (1978).
[CrossRef]

Riviere, O.

Roblin, A.

Roy, G.

Roy, N.

Samokhvalov, I. V.

B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18, 866–870 (2005).

B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43(36), 6620–6628 (2004).
[CrossRef]

Sassen, K.

V. Noel and K. Sassen, “Study of ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44(5), 653–664 (2005).
[CrossRef]

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[CrossRef]

Trepte, C.

Vallar, E.

Venturi, V.

Volkov, S. N.

Winker, D.

Yang, P.

H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16(6), 3931–3948 (2008).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
[CrossRef]

You, Y.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
[CrossRef]

Zheng, Y.

Appl. Opt.

C. R. Hu, G. W. Kattawar, M. E. Parkin, and P. Herb, “Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer,” Appl. Opt. 26(19), 4159–4173 (1987).
[CrossRef] [PubMed]

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41(21), 4245–4257 (2002).
[CrossRef] [PubMed]

W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41(30), 6470–6476 (2002).
[CrossRef] [PubMed]

B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43(36), 6620–6628 (2004).
[CrossRef]

M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt. 45(20), 4878–4887 (2006).
[CrossRef] [PubMed]

G. G. Gimmestad, “Reexamination of depolarization in lidar measurements,” Appl. Opt. 47(21), 3795–3802 (2008).
[CrossRef] [PubMed]

C. Lavigne, A. Roblin, and P. Chervet, “Solar glint from oriented crystals in cirrus clouds,” Appl. Opt. 47(33), 6266–6276 (2008).
[CrossRef] [PubMed]

G. Roy and N. Roy, “Relation between circular and linear depolarization ratios under multiple-scattering conditions,” Appl. Opt. 47(35), 6563–6579 (2008).
[CrossRef] [PubMed]

Atmos. Oceanic Opt.

B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18, 866–870 (2005).

J. Appl. Meteorol.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals,” J. Appl. Meteorol. 17(8), 1220–1224 (1978).
[CrossRef]

V. Noel and K. Sassen, “Study of ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44(5), 653–664 (2005).
[CrossRef]

J. Atmos. Sci.

K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58(15), 2103–2112 (2001).
[CrossRef]

J. Geophys. Res.

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

J. Quant. Spectrosc. Radiat. Transf.

Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transf. 100(1-3), 470–482 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. C. van de Hulst, Light scattering by small particles (Wiley, 1957).

http://weather.uwyo.edu/upperair/sounding.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Observations of crystal clouds at successively changed (from linear to circular) state of initial laser beam polarization. May 28, 2009, 16:35 – 17:19.

Fig. 2
Fig. 2

Observations of crystal clouds using circularly polarized laser radiation. May 19, 2009, 10:25 – 11:12.

Fig. 3
Fig. 3

Observations of crystal clouds using circularly polarized laser radiation. April 24, 2009, 18:38 – 18:54.

Fig. 4
Fig. 4

Observations of individual specularly reflective particles with recording of each lidar signal. Circular polarization. The component I is shown at the left of the figure, and the depolarization parameter d ( K 4 = 1.6 ) is shown in the centre. The record of single pulse number 103 is shown at the right of the figure. May 28, 2009, 16:30 – 16:41.

Metrics