Abstract

Significant effects from heating occur in both single and two tone fiber amplifiers. Single tone 1064 nm amplifiers have highest efficiency when the external environment surrounding the gain fiber is cold while 1064 nm two tone amplifiers co-seeded with broadband 1040 nm have maximum efficiency when the gain fiber is hot. It is shown experimentally that changes in the temperature of the core of the gain fiber have dramatic effects on the 1064 nm / 1040 nm power distribution in the output of two tone amplifiers. This has been attributed to temperature dependence of the absorption and emission cross-sections at the wavelengths of interest.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef]
  2. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications”, Proc. SPIE 6453, 64531F–1 to 64531F–7 (2007).
  3. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  4. A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers”, in Proceedings of the 17th ECOC, 25–28, (1991).
  5. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  6. M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber”, Proc. SPIE 6873, 68730N–1 to 68730N–7 (2008).
  7. B. Shiner, “Recent technical and marketing developments in high power fiber lasers”, in Tech. Focus: Fiber Lasers and Amplifiers: Concepts to Applications, CLEO Europe, Munich, Germany, 2009.
  8. T. Bronder, I. Dajani, C. Zeringue, and T. Shay, “Multi-tone driven high-power narrow linewidth rare earth doped fiber amplifier”, US Patent 7764720, issued July 27, 2010.
  9. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
    [CrossRef] [PubMed]
  10. I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
    [CrossRef]
  11. C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results”, Proc SPIE 7580, 75802L–1 to 75802L–8, (2010).
  12. L. J. Henry, T. M. Shay, D. W. Hult, and K. B. Rowland, “Enhancement of output power from narrow linewidth amplifiers via two-tone effect--high power experimental results,” Opt. Express 18(23), 23939–23947 (2010).
    [CrossRef] [PubMed]
  13. L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010).
    [CrossRef]
  14. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
    [CrossRef]
  15. N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett. 26(21), 1669–1671 (2001).
    [CrossRef]
  16. X. Peng and L. Dong, “Temperature dependence of ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 25(1), 126–130 (2008).
    [CrossRef]
  17. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
    [CrossRef]
  18. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
    [CrossRef]
  19. O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).
  20. K. Saito, R. Yamamoto, N. Kamiya, E. H. Sekiya, and P. Barua, “Fictive temperature dependence of optical properties in Yb-doped silica”, Proc SPIE 6998, 69981J–1 to 69981J–8, (2008).
  21. F. Patel, “Solid-state rare earth doped media for applications”, Ph.D. dissertation, University of California, Davis, California, 2000.
  22. V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
    [CrossRef]
  23. Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
    [CrossRef]
  24. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
    [CrossRef]
  25. K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
    [CrossRef]

2010 (2)

L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010).
[CrossRef]

L. J. Henry, T. M. Shay, D. W. Hult, and K. B. Rowland, “Enhancement of output power from narrow linewidth amplifiers via two-tone effect--high power experimental results,” Opt. Express 18(23), 23939–23947 (2010).
[CrossRef] [PubMed]

2009 (1)

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

2008 (5)

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[CrossRef]

X. Peng and L. Dong, “Temperature dependence of ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 25(1), 126–130 (2008).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

2007 (4)

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[CrossRef]

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

2004 (1)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[CrossRef]

2002 (1)

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

2001 (1)

2000 (1)

Alimov, O.K.

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Bacus, R.

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

Barua, P.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[CrossRef]

Basiev, T.T.

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Brilliant, N. A.

Bronder, T. J.

Chen, D.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Chen, X.

Chung, S.

L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010).
[CrossRef]

Crowley, A. M.

Dajani, I.

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

Demeritt, J. A.

Dianov, E. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[CrossRef]

Dong, L.

Dutta, N. K.

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

Gavrielides, A.

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[CrossRef]

Goldberg, L.

Gray, S.

Grukh, D. A.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[CrossRef]

Henry, L. J.

Henry, L.J.

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hult, D. W.

Ikushima, A. J.

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[CrossRef]

Jeong, Y.

L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Karasik, A.Ya.

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Kliner, D. A.

Konushkin, V.A.

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Koplow, J. P.

Kurkov, A. S.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[CrossRef]

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[CrossRef]

Lagonik, K.

Li, M.-J.

Liu, A.

Lu, K.

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Okazaki, T.

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

Papashvili, A.G.

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Paramonov, V. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Peng, X.

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[CrossRef]

Petit, V.

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

Qiao, Y.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Qiu, J.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Ren, J.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Robin, C.

Rowland, K. B.

Ruffin, A. B.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Saito, K.

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[CrossRef]

Sekiya, E. H.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[CrossRef]

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[CrossRef]

Shay, T.

Shay, T. M.

L. J. Henry, T. M. Shay, D. W. Hult, and K. B. Rowland, “Enhancement of output power from narrow linewidth amplifiers via two-tone effect--high power experimental results,” Opt. Express 18(23), 23939–23947 (2010).
[CrossRef] [PubMed]

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Vazquez-Zuniga, L. A.

L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010).
[CrossRef]

Walton, D. T.

Wang, J.

Wen, L.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Wu, B.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Zenteno, L. A.

Zeringue, C.

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

J. Appl. Phys. (1)

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010).
[CrossRef]

Laser Phys. Lett. (2)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[CrossRef]

O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).

Mater. Chem. Phys. (1)

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008).
[CrossRef]

Opt. Commun. (1)

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008).
[CrossRef]

Quantum Electron. (1)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[CrossRef]

Other (8)

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results”, Proc SPIE 7580, 75802L–1 to 75802L–8, (2010).

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications”, Proc. SPIE 6453, 64531F–1 to 64531F–7 (2007).

K. Saito, R. Yamamoto, N. Kamiya, E. H. Sekiya, and P. Barua, “Fictive temperature dependence of optical properties in Yb-doped silica”, Proc SPIE 6998, 69981J–1 to 69981J–8, (2008).

F. Patel, “Solid-state rare earth doped media for applications”, Ph.D. dissertation, University of California, Davis, California, 2000.

A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers”, in Proceedings of the 17th ECOC, 25–28, (1991).

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber”, Proc. SPIE 6873, 68730N–1 to 68730N–7 (2008).

B. Shiner, “Recent technical and marketing developments in high power fiber lasers”, in Tech. Focus: Fiber Lasers and Amplifiers: Concepts to Applications, CLEO Europe, Munich, Germany, 2009.

T. Bronder, I. Dajani, C. Zeringue, and T. Shay, “Multi-tone driven high-power narrow linewidth rare earth doped fiber amplifier”, US Patent 7764720, issued July 27, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

a. Emission spectra from pump banks 1 and 2 for selected pump output powers within the range of interest. b. Values of absorption cross-sections (×1025) versus wavelength for Yb in silica [21].

Fig. 2
Fig. 2

Experimental setup for measurement of parameters associated with single tone fiber amplifiers. M1 is a dichroic mirror that reflects the 976 nm unabsorbed pump and passes the 1040 or 1064 nm signal.

Fig. 3
Fig. 3

Output power and percentage of unabsorbed pump for single tone fiber amplifiers operating at 1040 and 1064 nm as a function of the temperature of the external environment surrounding the gain fiber for lengths of gain fiber of 1, 4, and 6 m. Figures 3a-c show the output power of the signal and Fig. 3d-f show the percentage of unabsorbed pump.

Fig. 4
Fig. 4

High power two tone amplifier with the gain fiber in one temperature zone. M1 is a dichroic mirror that reflects the 976 nm unused pump and transmits the 1040 and 1064 nm signals. M2 is a 1064 spike filter that selectively transmits the 1064 nm and reflects all other wavelengths.

Fig. 5
Fig. 5

Dependence of the percentage of 1040 nm (or percentage 1064 nm) in the amplifier output on the temperature of the external environment of the gain fiber. 6.08 m of Nufern generation 7 25/400 double clad, polarization maintaining gain fiber was utilized. Two tone fiber amplifiers having five P1064 nm/ P1040 nm seed ratios from 0.11 to 0.88 were investigated.

Fig. 6
Fig. 6

Energy level diagram [16] of Yb in silica with 976 nm, 1040 nm, and 1064 nm transitions labeled.

Fig. 7
Fig. 7

a. Output power of the signal as a function of the effective temperature of the core and b. Output power of unused pump as a function of the effective temperature of the core. Experimental data as well as predictions from the model are shown. The environmental temperature range of the experimental data, 20 to 80°C, is indicated in green for the 1040 nm amplifier. Also, the 60°C temperature increment from 20 to 80°C according to Peng [16] and Vazquez-Zuniga [13] is indicated in red and blue, respectively.

Fig 9
Fig 9

Percentage of 1040 nm in the output of two tone fiber amplifiers having five distinct 1064 nm/1040 nm seed ratios ranging from 0.11 to 0.88 as a function of the effective temperature of the core. Trend lines have been placed through the modeling results. The environmental temperature range of the experimental data, 20 to 80°C, is indicated in green. Also, the 60°C temperature increment according to Peng [16] and Vazquez-Zuniga [13] is indicated as well.

Fig 8
Fig 8

Output power delta for signal (P1064 - P1040) versus length and output power delta for unused pump (P976 (1064) - P976(1040)) versus length for environmental temperatures of 20, 55, and 80°C. The cross-over points for the signal are indicated with a blue arrow and the cross-over points for the unused pump are indicated with a red arrow.

Fig. 10
Fig. 10

Power profiles for 1040 and 1064 nm as a function of gain fiber length for two tone fiber amplifiers at environmental temperatures of 20 and 80°C seeded with 156 mW of 1064 nm and 1.4 W of 1040 nm.

Tables (2)

Tables Icon

Table 1 Percentage of 1040 nm in the output of a fiber amplifier as a function of the temperature of the external environment of the gain fiber. Nufern generation 7 25/400 double-clad, polarization-maintaining gain fiber was utilized.

Tables Icon

Table 2 Parameters utilized in model

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

σ a ( ν , T ) = x = a d y = e g e E x k B T x = a d e E x k B T σ x y a ( ν )
σ e ( ν , T ) = x = e g y = a d e E x k B T x = e g e E x k B T σ x y e ( ν )
d I 1064 n m d z = Γ 1064 n m I 1064 n m ( N 2 σ 1064 n m e N 1 σ 1064 n m a ) α 1064 n m I 1064 n m
d I 1040 n m d z = Γ 1040 n m I 1040 n m ( N 2 σ 1040 n m e N 1 σ 1040 n m a ) α 1040 n m I 1040 n m
d I 976 n m d z = Γ 976 n m I 976 n m ( N 2 σ 976 n m e N 1 σ 976 n m a ) α 976 n m I 976 n m
σ ( T ) = σ ( 20 ° C ) + d σ d T Δ T
d σ a b s 1040 n m d T = 3.33 × 10 28 m 2 / ° K
d σ e m 1040 n m d T = 4.67 × 10 28 m 2 / ° K
d σ a b s 1064 n m d T = 7.78 × 10 29 m 2 / ° K
d σ e m 1064 n m d T = 2.44 × 10 28 m 2 / ° K
d σ a b s 976 n m d T = d σ e m 976 n m d T = 1.63 × 10 27 m 2 / ° K

Metrics