Abstract

WO3 -Pd composite films were deposited on the side-face of side-polished fiber Bragg grating as sensing elements by magnetron sputtering process. XRD result indicates that the WO3 -Pd composite films are mainly amorphous. Compared to standard FBG coated with same hydrogen sensitive film, side-polished FBG significantly increase the sensor’s sensitivity. When hydrogen concentrations are 4% and 8% in volume percentage, maximum wavelength shifts of side-polished FBG are 25 and 55 pm respectively. The experimental results show the sensor’s hydrogen response is reversible, and side-polished FBG hydrogen sensor has great potential in hydrogen’s measurement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
    [CrossRef]
  2. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31(8), 625–636 (1999).
    [CrossRef]
  3. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
    [CrossRef]
  4. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  5. D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
    [CrossRef]
  6. M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
    [CrossRef]
  7. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
    [CrossRef]
  8. X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
    [CrossRef]
  9. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
    [CrossRef]
  10. C. Ma and A. Wang, “Optical fiber tip acoustic resonator for hydrogen sensing,” Opt. Lett. 35(12), 2043–2045 (2010).
    [CrossRef] [PubMed]
  11. M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
    [CrossRef]
  12. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
    [CrossRef]
  13. C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
    [CrossRef] [PubMed]
  14. M. Aleixandrea, P. Correderab, M. L. Hernanzb, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in Proceedings of IEEE Conference on Electron Device (Institute of Electrical and Electronics Engineers, Spanish, 2007), pp. 223–225.
  15. J. H. Lee, J. H. Kim, Y. G. Han, S. H. Kim, and S. B. Lee, “Investigation of Raman fiber laser temperature probe based on fiber Bragg gratings for long-distance remote sensing applications,” Opt. Express 12(8), 1747–1752 (2004).
    [CrossRef] [PubMed]
  16. G. T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, and N. Pleros, “Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications,” Opt. Express 18(1), 179–186 (2010).
    [CrossRef] [PubMed]
  17. D. Lin, X. Jiang, F. Xie, W. Zhang, Z. Lin, and I. Bennion, “High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology,” Opt. Express 12(23), 5729–5734 (2004).
    [CrossRef] [PubMed]
  18. J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).
  19. C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
    [CrossRef]
  20. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  21. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  22. Z. Chen, and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE 7157, 71570J1–6 (2009)
  23. P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).
  24. L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
    [CrossRef]
  25. T. Nishide and F. Mizukami, “Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process,” Thin Solid Films 259(2), 212–217 (1995).
    [CrossRef]
  26. T. Nishide and F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34(11), 3329–3333 (1995).
    [CrossRef]

2010 (4)

M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
[CrossRef]

C. Ma and A. Wang, “Optical fiber tip acoustic resonator for hydrogen sensing,” Opt. Lett. 35(12), 2043–2045 (2010).
[CrossRef] [PubMed]

G. T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, and N. Pleros, “Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications,” Opt. Express 18(1), 179–186 (2010).
[CrossRef] [PubMed]

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

2009 (2)

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

2008 (3)

2006 (2)

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).

2005 (1)

2004 (2)

2000 (2)

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

1999 (3)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31(8), 625–636 (1999).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995 (2)

T. Nishide and F. Mizukami, “Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process,” Thin Solid Films 259(2), 212–217 (1995).
[CrossRef]

T. Nishide and F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34(11), 3329–3333 (1995).
[CrossRef]

1994 (1)

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Asakura, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Bennion, I.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Bontempi, E.

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

Borgese, L.

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

Buric, M.

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Butler, M. A.

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
[CrossRef]

Caucheteur, C.

Chen, H.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Chen, J.

Chen, K. P.

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Chen, T.

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Chen, Z.

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

Clément, M.

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Debliquy, M.

Depero, L. E.

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

Dong, X,

J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).

évenot, X. B.

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Fukuda, K.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Gagnaire, H.

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

Gupta, B. D.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31(8), 625–636 (1999).
[CrossRef]

Han, Y. G.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Jiang, D.

M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
[CrossRef]

Jiang, P.

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

Jiang, X.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Jyu, S.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Kanellos, G. T.

Kazemi, A.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31(8), 625–636 (1999).
[CrossRef]

Kim, J. H.

Kim, S. H.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lahem, D.

LeBlac, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lee, J. H.

Lee, S. B.

Li, F.

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

Lin, D.

Lin, K.

Lin, S.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lin, Y.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lin, Z.

Liu, L.

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

Liu, W.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lu, Y.

Luna-Moreno, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

Ma, C.

Maklad, M.

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Martínez-Escobar, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

Mégret, P.

Ming, H.

Mitrogiannis, C.

Mizukami, F.

T. Nishide and F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34(11), 3329–3333 (1995).
[CrossRef]

T. Nishide and F. Mizukami, “Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process,” Thin Solid Films 259(2), 212–217 (1995).
[CrossRef]

Monzón-Hernández, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

Nakagawa, H.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Nianios, G.

Nishide, T.

T. Nishide and F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34(11), 3329–3333 (1995).
[CrossRef]

T. Nishide and F. Mizukami, “Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process,” Thin Solid Films 259(2), 212–217 (1995).
[CrossRef]

Okazaki, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Papaioannou, G.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Pleros, N.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Rossi, D.

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

Sekimoto, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Shi, Z,

J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).

Shigemori, T.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Sun, Y.

M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
[CrossRef]

Sutapun, B.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

Swinehart, P. R.

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Takahashi, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

Tien, C.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Trouillet, A.

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

Tsiokos, D.

Veillas, C.

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

Villatoro, J.

Wang, A.

Wang, P.

Xie, F.

Yang, M.

M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
[CrossRef]

Zanola, P.

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

Zeng, Y.

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

Zhang, D.

M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
[CrossRef]

Zhang, W.

Zheng, R.

Zhou, J.

J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).

Apply Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Chin. Acta Photon. Sin. (1)

J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).

IEEE Photon. Technol. Lett. (1)

M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009).
[CrossRef]

J. Coat. Technol. Res. (1)

L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Opt. Eng. (1)

T. Nishide and F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34(11), 3329–3333 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31(8), 625–636 (1999).
[CrossRef]

Semicond. Optoelectron. (1)

P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).

Sens. Actuators B Chem. (7)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000).
[CrossRef]

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010).
[CrossRef]

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
[CrossRef]

X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000).
[CrossRef]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Thin Solid Films (2)

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

T. Nishide and F. Mizukami, “Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process,” Thin Solid Films 259(2), 212–217 (1995).
[CrossRef]

Other (2)

Z. Chen, and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE 7157, 71570J1–6 (2009)

M. Aleixandrea, P. Correderab, M. L. Hernanzb, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in Proceedings of IEEE Conference on Electron Device (Institute of Electrical and Electronics Engineers, Spanish, 2007), pp. 223–225.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic illustration of 40 and 110 nm WO3-Pd composite film

Fig. 2
Fig. 2

Microphotography of side-polished FBG: (a) SP-FBG1 side view and (b) tope view before sputtering; (c) SP-FBG1tope view after sputtering; (d) SP-FBG2, (e) SP-FBG3 and (f) SP-FBG4 tope view before sputtering

Fig. 3
Fig. 3

Configuration of optical fiber hydrogen sensor characterization.

Fig. 4
Fig. 4

X-ray diffraction of 40nm and 110nm WO3-Pd composite film

Fig. 5
Fig. 5

Two cycle’s response of 6 samples exposed to different hydrogen concentration: standard FBG(a) and SP-FBG1(b) coated with 40nm WO3-Pd composite film; standard FBG(c), SP-FBG2(d), SP-FBG3(e) and SP-FBG4(f) coated with 110nm WO3-Pd composite film

Fig. 6
Fig. 6

Central wavelength shift of standard FBG and SF-FBG coated with 40(a) and 110(b) nm WO3-Pd composite film

Fig. 7
Fig. 7

Two cycle of SP-FBG2 coated with 110nm WO3-Pd composite film under different hydrogen concentration

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n e f f Λ

Metrics