Abstract

We quantitatively determined the photocarrier diffusion length in intrinsic Ge nanowires (NWs) using scanning photocurrent microscopy. Specifically, the spatial mapping of one-dimensional decay in the photocurrent along the Ge NWs under the scanning laser beam (λ= 532 nm) was analyzed in a one-dimensional diffusion rate equation to extract the diffusion length of ~4-5 μm. We further attempt to determine the photocarrier lifetime under a finite bias across the Ge NWs, and discuss the role of surface scattering.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bhattacharya, Semiconductor Optoelectronics Devices,” 2nd ed., (Prentice Hall, Upper Saddle River, NJ., 1996).
  2. C.-B. Jin, J.-E. Yang, and M.-H. Jo, “Shape-controlled growth of single-crystalline Ge nanostructures,” Appl. Phys. Lett. 88(19), 193105 (2006).
    [CrossRef]
  3. J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
    [CrossRef] [PubMed]
  4. Y. Ahn, J. Dunning, and J. Park, “Scanning Photocurrent Imaging and Electronic Band Studies In Silicon Nanowire Field Effect Transistors,” Nano Lett. 5(7), 1367–1370 (2005).
    [CrossRef] [PubMed]
  5. Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
    [CrossRef]
  6. E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
    [CrossRef] [PubMed]
  7. J. E. Allen, E. R. Hemesath, and L. J. Lauhon, “Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,” Nano Lett. 9(5), 1903–1908 (2009).
    [CrossRef] [PubMed]
  8. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett. 9(5), 1742–1746 (2009).
    [CrossRef] [PubMed]
  9. C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
    [CrossRef] [PubMed]
  10. D. C. Look, “Schottky‐barrier profiling techniques in semiconductors: Gate current and parasitic resistance effects,” J. Appl. Phys. 57(2), 377–383 (1985).
    [CrossRef]
  11. X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
    [CrossRef] [PubMed]
  12. E. O. Johnson, “Measurement of Minority Carrier Lifetimes with the Surface Photovoltage,” J. Appl. Phys. 28(11), 1349–1353 (1957).
    [CrossRef]
  13. K. Vetter, “Recent Developments in the Fabrication and Operation of Germanium Detectors,” Annu. Rev. Nucl. Part. Sci. 57(1), 363–404 (2007).
    [CrossRef]
  14. R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
    [CrossRef] [PubMed]
  15. R. H. Kingston, “Review of Germanium Surface Phenomena,” J. Appl. Phys. 27(2), 101–114 (1956).
    [CrossRef]
  16. R. H. Kingston and A. L. Mcwhorter, “Relaxation Time of Surface States on Germanium,” Phys. Rev. 103(3), 534–540 (1956).
    [CrossRef]
  17. J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
    [CrossRef]
  18. T. Hanrath and B. A. Korgel, “Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires,” J. Phys. Chem. B 109(12), 5518–5524 (2005).
    [CrossRef]
  19. C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
    [CrossRef] [PubMed]

2011

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

2010

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

2009

J. E. Allen, E. R. Hemesath, and L. J. Lauhon, “Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,” Nano Lett. 9(5), 1903–1908 (2009).
[CrossRef] [PubMed]

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett. 9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

2008

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

2007

K. Vetter, “Recent Developments in the Fabrication and Operation of Germanium Detectors,” Annu. Rev. Nucl. Part. Sci. 57(1), 363–404 (2007).
[CrossRef]

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

2006

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

C.-B. Jin, J.-E. Yang, and M.-H. Jo, “Shape-controlled growth of single-crystalline Ge nanostructures,” Appl. Phys. Lett. 88(19), 193105 (2006).
[CrossRef]

J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
[CrossRef] [PubMed]

2005

Y. Ahn, J. Dunning, and J. Park, “Scanning Photocurrent Imaging and Electronic Band Studies In Silicon Nanowire Field Effect Transistors,” Nano Lett. 5(7), 1367–1370 (2005).
[CrossRef] [PubMed]

T. Hanrath and B. A. Korgel, “Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires,” J. Phys. Chem. B 109(12), 5518–5524 (2005).
[CrossRef]

1985

D. C. Look, “Schottky‐barrier profiling techniques in semiconductors: Gate current and parasitic resistance effects,” J. Appl. Phys. 57(2), 377–383 (1985).
[CrossRef]

1957

E. O. Johnson, “Measurement of Minority Carrier Lifetimes with the Surface Photovoltage,” J. Appl. Phys. 28(11), 1349–1353 (1957).
[CrossRef]

1956

R. H. Kingston, “Review of Germanium Surface Phenomena,” J. Appl. Phys. 27(2), 101–114 (1956).
[CrossRef]

R. H. Kingston and A. L. Mcwhorter, “Relaxation Time of Surface States on Germanium,” Phys. Rev. 103(3), 534–540 (1956).
[CrossRef]

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

Ahn, Y.

Y. Ahn, J. Dunning, and J. Park, “Scanning Photocurrent Imaging and Electronic Band Studies In Silicon Nanowire Field Effect Transistors,” Nano Lett. 5(7), 1367–1370 (2005).
[CrossRef] [PubMed]

Ahn, Y. H.

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett. 9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

Allen, J. E.

J. E. Allen, E. R. Hemesath, and L. J. Lauhon, “Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,” Nano Lett. 9(5), 1903–1908 (2009).
[CrossRef] [PubMed]

Balasubramanian, K.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Bardeen, J.

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

Burghard, M.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Cao, G.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Cho, Y.-J.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

Choi, S.

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

Coovert, R. E.

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

David, J. K.

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

Dorfmuller, J.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Dunning, J.

Y. Ahn, J. Dunning, and J. Park, “Scanning Photocurrent Imaging and Electronic Band Studies In Silicon Nanowire Field Effect Transistors,” Nano Lett. 5(7), 1367–1370 (2005).
[CrossRef] [PubMed]

Fu, N.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Fung, W. Y.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Gu, Y.

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

Guo, G.-C.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Guo, G.-P.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Hanrath, T.

T. Hanrath and B. A. Korgel, “Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires,” J. Phys. Chem. B 109(12), 5518–5524 (2005).
[CrossRef]

Hao, X.-J.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Hemesath, E. R.

J. E. Allen, E. R. Hemesath, and L. J. Lauhon, “Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,” Nano Lett. 9(5), 1903–1908 (2009).
[CrossRef] [PubMed]

Ji, Z.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Jin, C.-B.

C.-B. Jin, J.-E. Yang, and M.-H. Jo, “Shape-controlled growth of single-crystalline Ge nanostructures,” Appl. Phys. Lett. 88(19), 193105 (2006).
[CrossRef]

J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
[CrossRef] [PubMed]

Jo, M.-H.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
[CrossRef] [PubMed]

C.-B. Jin, J.-E. Yang, and M.-H. Jo, “Shape-controlled growth of single-crystalline Ge nanostructures,” Appl. Phys. Lett. 88(19), 193105 (2006).
[CrossRef]

Johnson, E. O.

E. O. Johnson, “Measurement of Minority Carrier Lifetimes with the Surface Photovoltage,” J. Appl. Phys. 28(11), 1349–1353 (1957).
[CrossRef]

Kang, K.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

Kern, K.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Kim, C.-J.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
[CrossRef] [PubMed]

Kingston, R. H.

R. H. Kingston, “Review of Germanium Surface Phenomena,” J. Appl. Phys. 27(2), 101–114 (1956).
[CrossRef]

R. H. Kingston and A. L. Mcwhorter, “Relaxation Time of Surface States on Germanium,” Phys. Rev. 103(3), 534–540 (1956).
[CrossRef]

Korgel, B. A.

T. Hanrath and B. A. Korgel, “Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires,” J. Phys. Chem. B 109(12), 5518–5524 (2005).
[CrossRef]

Lauhon, L. J.

J. E. Allen, E. R. Hemesath, and L. J. Lauhon, “Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,” Nano Lett. 9(5), 1903–1908 (2009).
[CrossRef] [PubMed]

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

Lee, E. J. H.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Lee, H.-S.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

Lee, J. K.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

Lee, R. R.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

Lensch, J. L.

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

Li, H.-O.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Look, D. C.

D. C. Look, “Schottky‐barrier profiling techniques in semiconductors: Gate current and parasitic resistance effects,” J. Appl. Phys. 57(2), 377–383 (1985).
[CrossRef]

Lu, W.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Mcwhorter, A. L.

R. H. Kingston and A. L. Mcwhorter, “Relaxation Time of Surface States on Germanium,” Phys. Rev. 103(3), 534–540 (1956).
[CrossRef]

Mews, A.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Morrison, S. R.

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

Park, J.

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett. 9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

Y. Ahn, J. Dunning, and J. Park, “Scanning Photocurrent Imaging and Electronic Band Studies In Silicon Nanowire Field Effect Transistors,” Nano Lett. 5(7), 1367–1370 (2005).
[CrossRef] [PubMed]

Picraux, S. T.

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

Prasankumar, R. P.

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

Romankiewicz, J. P.

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

Ruiz-Vargas, C.

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett. 9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

Schriffer, J. R.

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

Sun, R.

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

Taylor, A. J.

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

Trugman, S. A.

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

Tu, T.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Vetter, K.

K. Vetter, “Recent Developments in the Fabrication and Operation of Germanium Detectors,” Annu. Rev. Nucl. Part. Sci. 57(1), 363–404 (2007).
[CrossRef]

Vogelgesan, R.

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Yang, J.-E.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

C.-B. Jin, J.-E. Yang, and M.-H. Jo, “Shape-controlled growth of single-crystalline Ge nanostructures,” Appl. Phys. Lett. 88(19), 193105 (2006).
[CrossRef]

J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
[CrossRef] [PubMed]

Zhou, C.

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

Adv. Mater.

C.-J. Kim, H.-S. Lee, Y.-J. Cho, J.-E. Yang, R. R. Lee, J. K. Lee, and M.-H. Jo, “On-Nanowire Band-Graded Si:Ge Photodetectors,” Adv. Mater. 23(8), 1025–1029 (2011).
[CrossRef] [PubMed]

Annu. Rev. Nucl. Part. Sci.

K. Vetter, “Recent Developments in the Fabrication and Operation of Germanium Detectors,” Annu. Rev. Nucl. Part. Sci. 57(1), 363–404 (2007).
[CrossRef]

Appl. Phys. Lett.

C.-B. Jin, J.-E. Yang, and M.-H. Jo, “Shape-controlled growth of single-crystalline Ge nanostructures,” Appl. Phys. Lett. 88(19), 193105 (2006).
[CrossRef]

J. Appl. Phys.

D. C. Look, “Schottky‐barrier profiling techniques in semiconductors: Gate current and parasitic resistance effects,” J. Appl. Phys. 57(2), 377–383 (1985).
[CrossRef]

E. O. Johnson, “Measurement of Minority Carrier Lifetimes with the Surface Photovoltage,” J. Appl. Phys. 28(11), 1349–1353 (1957).
[CrossRef]

R. H. Kingston, “Review of Germanium Surface Phenomena,” J. Appl. Phys. 27(2), 101–114 (1956).
[CrossRef]

J. Phys. Chem. B

T. Hanrath and B. A. Korgel, “Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires,” J. Phys. Chem. B 109(12), 5518–5524 (2005).
[CrossRef]

Nano Lett.

R. P. Prasankumar, S. Choi, S. A. Trugman, S. T. Picraux, and A. J. Taylor, “Ultrafast Electron and Hole Dynamics in Germanium Nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[CrossRef] [PubMed]

X.-J. Hao, T. Tu, G. Cao, C. Zhou, H.-O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, and W. Lu, “Strong and Tunable Spin−Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires,” Nano Lett. 10(8), 2956–2960 (2010).
[CrossRef] [PubMed]

J. E. Allen, E. R. Hemesath, and L. J. Lauhon, “Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,” Nano Lett. 9(5), 1903–1908 (2009).
[CrossRef] [PubMed]

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett. 9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

C.-J. Kim, H.-S. Lee, Y.-J. Cho, K. Kang, and M.-H. Jo, “Diameter-Dependent Internal Gain in Ohmic Ge Nanowire Photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[CrossRef] [PubMed]

J.-E. Yang, C.-B. Jin, C.-J. Kim, and M.-H. Jo, “Band-Gap modulation in single-crystalline Si1-xGex nanowires,” Nano Lett. 6(12), 2679–2684 (2006).
[CrossRef] [PubMed]

Y. Ahn, J. Dunning, and J. Park, “Scanning Photocurrent Imaging and Electronic Band Studies In Silicon Nanowire Field Effect Transistors,” Nano Lett. 5(7), 1367–1370 (2005).
[CrossRef] [PubMed]

Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, “Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,” Nano Lett. 6(5), 948–952 (2006).
[CrossRef]

Phys. Rev.

R. H. Kingston and A. L. Mcwhorter, “Relaxation Time of Surface States on Germanium,” Phys. Rev. 103(3), 534–540 (1956).
[CrossRef]

J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schriffer, and R. Sun, “Surface Conductance and the Field Effect on Germanium,” Phys. Rev. 104(1), 47–51 (1956).
[CrossRef]

Small

E. J. H. Lee, K. Balasubramanian, J. Dorfmuller, R. Vogelgesan, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[CrossRef] [PubMed]

Other

P. Bhattacharya, Semiconductor Optoelectronics Devices,” 2nd ed., (Prentice Hall, Upper Saddle River, NJ., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) (a) Schematics of scanning photocurrent microscopy (SPM) on a Ge nanowire (NW) on a SiO2/p+-Si substrate, where a laser beam (λ = 532 nm) was used with a chopper at a frequency of 10 kHz. The lock-in amplifier and photodiode were used for the photocurrent and reflectance measurements, respectively. (b) Dark conductance G as a function of gate voltages VG , showing p-type characteristics. The inset shows ohmic I-V characteristics for VSD = −5 V (red), 0 V (black), and 5 V (blue), respectively.

Fig. 2
Fig. 2

(Color online) (a) SPM images of the photocurrent (I ph) at VSD = 35 mV, 15 mV, 0 V, −15 mV, and −35 mV, respectively, where the gray and dashed lines indicate the reflectance image and Ge NW, respectively. The S (D) stands for the drain (source) at x1(2) of the NW axial coordinate x. Here, the scale bar indicates 3 μm. (b) 3-dimensional Iph profile at VSD = 0 V. (c) The NW axial I ph profile for VSD = 35 mV (red), 0 mV (black), and −35 mV (blue), respectively.

Fig. 3
Fig. 3

(online color) (a) Photocurrent, I ph profile along the NW at VS = 0 V with the fitting curve, where the circles (black) and line (red) indicate the experiment data and the fitting, respectively. See the details in the text. (b) The characteristic parameter, λhhτh for various VSD with error bars.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ n h ( e ) t = D h(e) 2 δ n h ( e ) x 2 + μ h(e) E δ n h ( e ) x + g - δ n h ( e ) τ h ( e ) ,
I ph = I S - I D = (- I h2 + I e2 ) - (- I h1 + I e1 ),
I ph = I h1 - I h2 = I h0 {exp(- |x-x 1 | λ h ) - exp(- |x-x 2 | λ h ) } .
I ph = I h0 {exp(- |x-x 1 | λ h ) - exp(- |x-x 2 | λ h )} - I e0 {exp(- |x-x 1 | λ e ) - exp(- |x-x 2 | λ e )},
d(ln( I ph )) dx d(ln( δ n h )) dx -E/2 + (-E/2) 2 + ( λ h / ( μ h τ h ) ) 2 kT/e .

Metrics