Abstract

A scanning laser Doppler velocimeter (LDV) without any moving mechanism in its sensor probe is proposed. In the proposed scanning LDV, the measurement position is axially scanned by change in the wavelength of the light input to the sensor probe, instead of using a moving mechanism in the sensor probe. For this purpose, a tunable laser and diffraction gratings are used, and the sensor probe including the gratings is separated from the main body including the tunable laser. To demonstrate the scanning function based on the proposed concept, an experiment was conducted using optical fibers, a commercial tunable laser and a setup of the sensor probe consisting of bulk optical components. As the experimental result, it is found that the measurement positions estimated from the measured beat frequencies are in good agreement with the theoretical values. The scan ranges over a wavelength range of 30 nm are estimated to be 29.3 mm when the beam angle to the measurement position at the wavelength of 1540 nm is 10° and 20.8 mm when the beam angle is 15°. The result indicates that the scanning function by means of changing the wavelength input to the sensor probe is successfully demonstrated for the first time. The proposed method has the potential for realizing a scanning LDV with a simple, compact and reliable sensor probe.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Grant and K. L. Orloff, “Two-color dual-beam backscatter laser Doppler velocimeter,” Appl. Opt. 12(12), 2913–2916 (1973).
    [CrossRef] [PubMed]
  2. M. Uchiyama and K. Hakomori, “A beam scanning LDV to measure velocity profile of unsteady flow,” Precis. Eng. 48, 939–944 (1982) (in Japanese).
    [CrossRef]
  3. F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
    [CrossRef]
  4. P. Sriram, S. Hanagud, J. Craig, and N. M. Komerath, “Scanning laser Doppler Technique for velocity profile sensing on a moving surface,” Appl. Opt. 29(16), 2409–2417 (1990).
    [CrossRef] [PubMed]
  5. N. Nakatani, T. Nishikawa, Y. Yoneda, Y. Nakano, and T. Yamada, “Space-correlation measurement of attaching jets by the new scanning laser Doppler velocimeter using a diffraction grating,” in Proceedings of 7th Symp. on Turbulence (University of Missouri-Rolla, 1981), pp. 380–389.
  6. E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001).
    [CrossRef]
  7. M. Tirabassi and S. J. Rothberg, “Scanning LDV using wedge prisms,” Opt. Lasers Eng. 47(3-4), 454–460 (2009).
    [CrossRef]
  8. T. Eiju, K. Matsuda, J. Ohtsubo, K. Honma, and K. Shimizu, “A frequency shifting of LDV for blood velocity measurement by a moving wedged glass,” Appl. Opt. 20(22), 3833–3837 (1981).
    [CrossRef] [PubMed]
  9. H. Nishihara, J. Koyama, N. Hoki, F. Kajiya, M. Hironaga, and M. Kano, “Optical-fiber laser Doppler velocimeter for high-resolution measurement of pulsatile blood flows,” Appl. Opt. 21(10), 1785–1790 (1982).
    [CrossRef] [PubMed]
  10. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33(16), 3549–3558 (1994).
    [CrossRef] [PubMed]
  11. W. N. Sharpe, Jr., Springer Handbook of Experimental Solid Mechanics (Springer, New York, 2008), Section 29.6.
  12. M. Stiegimeier and C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31(21), 4096–4105 (1992).
    [CrossRef]
  13. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Section 7.3.
  14. K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
    [CrossRef]
  15. J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, “Diffractive beam splitter for laser Doppler velocimetry,” Opt. Lett. 17(17), 1240–1242 (1992).
    [CrossRef] [PubMed]
  16. H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
    [CrossRef]
  17. K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
    [CrossRef]
  18. J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
    [CrossRef]
  19. L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
    [CrossRef] [PubMed]
  20. F. Onofri, “Three interfering beams in laser Doppler velocimetry for particle position and microflow velocity profile measurements,” Appl. Opt. 45(14), 3317–3324 (2006).
    [CrossRef] [PubMed]
  21. J. Oldengarm and P. Venkatesh, “A simple two-component laser Doppler anemometer using a rotating radial diffraction grating,” J. Phys. E Sci. Instrum. 9(11), 1009–1012 (1976).
    [CrossRef]
  22. J. P. Sharpe, “A phase-stepped grating technique for frequency shifting in laser Doppler velocimetry,” Opt. Lasers Eng. 45(11), 1067–1070 (2007).
    [CrossRef]
  23. R. Sawada, K. Hane, and E. Higurashi, Optical micro electro mechanical systems (Ohmsha, Tokyo, 2002), Section 5.2. (in Japanese)
  24. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Section 7.2.2.
  25. M. Takahashi, S. Watanabe, M. Kurihara, T. Takeuchi, Y. Deki, S. Takaesu, M. Horie, T. Miyazaki, K. Suzuki, N. Sakuma, A. Kawauchi, and H. Yamazaki, “Tunable Lasers Based on Silica Waveguide Ring Resonators,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWJ1.
  26. D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
    [CrossRef]

2009 (2)

M. Tirabassi and S. J. Rothberg, “Scanning LDV using wedge prisms,” Opt. Lasers Eng. 47(3-4), 454–460 (2009).
[CrossRef]

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

2007 (2)

J. P. Sharpe, “A phase-stepped grating technique for frequency shifting in laser Doppler velocimetry,” Opt. Lasers Eng. 45(11), 1067–1070 (2007).
[CrossRef]

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

2006 (1)

2005 (1)

2002 (1)

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

2001 (1)

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001).
[CrossRef]

1998 (1)

K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
[CrossRef]

1994 (1)

1992 (2)

1990 (1)

1987 (1)

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

1982 (2)

1981 (2)

T. Eiju, K. Matsuda, J. Ohtsubo, K. Honma, and K. Shimizu, “A frequency shifting of LDV for blood velocity measurement by a moving wedged glass,” Appl. Opt. 20(22), 3833–3837 (1981).
[CrossRef] [PubMed]

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[CrossRef]

1976 (1)

J. Oldengarm and P. Venkatesh, “A simple two-component laser Doppler anemometer using a rotating radial diffraction grating,” J. Phys. E Sci. Instrum. 9(11), 1009–1012 (1976).
[CrossRef]

1973 (1)

Aarnoudse, J. G.

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33(16), 3549–3558 (1994).
[CrossRef] [PubMed]

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Bian, Z.

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

Büttner, L.

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
[CrossRef] [PubMed]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Craig, J.

Czarske, J.

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
[CrossRef] [PubMed]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
[CrossRef]

Dassel, A. C. M.

de Mul, F. F. M.

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33(16), 3549–3558 (1994).
[CrossRef] [PubMed]

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Durst, F.

Eiju, T.

Fujii, Y.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Graaff, R.

Grant, G. R.

Greve, J.

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33(16), 3549–3558 (1994).
[CrossRef] [PubMed]

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Hakomori, K.

M. Uchiyama and K. Hakomori, “A beam scanning LDV to measure velocity profile of unsteady flow,” Precis. Eng. 48, 939–944 (1982) (in Japanese).
[CrossRef]

Hanagud, S.

Helsdingen, M. A.

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Hironaga, M.

Hoki, N.

Honma, K.

Ishima, T.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Jentink, H. W.

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Juthanggoon, T.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Kajiya, F.

Kano, M.

Knuppertz, H.

Koelink, M. H.

Komerath, N. M.

Koyama, J.

Lehmann, B.

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[CrossRef]

Li, E. B.

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001).
[CrossRef]

Maru, K.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Matsuda, K.

Müller, H.

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Nishihara, H.

Obokata, T.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Ohtsubo, J.

Oldengarm, J.

J. Oldengarm and P. Venkatesh, “A simple two-component laser Doppler anemometer using a rotating radial diffraction grating,” J. Phys. E Sci. Instrum. 9(11), 1009–1012 (1976).
[CrossRef]

Onofri, F.

Orloff, K. L.

Plamann, K.

K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
[CrossRef]

Pornsuwancharoen, N.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Rabus, D. G.

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

Razik, T.

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Rothberg, S. J.

M. Tirabassi and S. J. Rothberg, “Scanning LDV using wedge prisms,” Opt. Lasers Eng. 47(3-4), 454–460 (2009).
[CrossRef]

Schmidt, J.

Schwider, J.

Shakouri, A.

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

Sharpe, J. P.

J. P. Sharpe, “A phase-stepped grating technique for frequency shifting in laser Doppler velocimetry,” Opt. Lasers Eng. 45(11), 1067–1070 (2007).
[CrossRef]

Sheridan, J. T.

Shimizu, K.

Sriram, P.

Stiegimeier, M.

Stork, W.

Streibl, N.

Suichies, H. E.

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Tieu, A. K.

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001).
[CrossRef]

Tirabassi, M.

M. Tirabassi and S. J. Rothberg, “Scanning LDV using wedge prisms,” Opt. Lasers Eng. 47(3-4), 454–460 (2009).
[CrossRef]

Tropea, C.

M. Stiegimeier and C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31(21), 4096–4105 (1992).
[CrossRef]

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[CrossRef]

Tünnermann, A.

K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
[CrossRef]

Uchiyama, M.

M. Uchiyama and K. Hakomori, “A beam scanning LDV to measure velocity profile of unsteady flow,” Precis. Eng. 48, 939–944 (1982) (in Japanese).
[CrossRef]

van Beurden, J. A. J.

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

Venkatesh, P.

J. Oldengarm and P. Venkatesh, “A simple two-component laser Doppler anemometer using a rotating radial diffraction grating,” J. Phys. E Sci. Instrum. 9(11), 1009–1012 (1976).
[CrossRef]

Völkel, R.

Yuen, W. Y. D.

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001).
[CrossRef]

Yupapin, P. P.

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Zellmer, H.

K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
[CrossRef]

Appl. Opt. (8)

G. R. Grant and K. L. Orloff, “Two-color dual-beam backscatter laser Doppler velocimeter,” Appl. Opt. 12(12), 2913–2916 (1973).
[CrossRef] [PubMed]

T. Eiju, K. Matsuda, J. Ohtsubo, K. Honma, and K. Shimizu, “A frequency shifting of LDV for blood velocity measurement by a moving wedged glass,” Appl. Opt. 20(22), 3833–3837 (1981).
[CrossRef] [PubMed]

H. Nishihara, J. Koyama, N. Hoki, F. Kajiya, M. Hironaga, and M. Kano, “Optical-fiber laser Doppler velocimeter for high-resolution measurement of pulsatile blood flows,” Appl. Opt. 21(10), 1785–1790 (1982).
[CrossRef] [PubMed]

P. Sriram, S. Hanagud, J. Craig, and N. M. Komerath, “Scanning laser Doppler Technique for velocity profile sensing on a moving surface,” Appl. Opt. 29(16), 2409–2417 (1990).
[CrossRef] [PubMed]

M. Stiegimeier and C. Tropea, “Mobile fiber-optic laser Doppler anemometer,” Appl. Opt. 31(21), 4096–4105 (1992).
[CrossRef]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33(16), 3549–3558 (1994).
[CrossRef] [PubMed]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
[CrossRef] [PubMed]

F. Onofri, “Three interfering beams in laser Doppler velocimetry for particle position and microflow velocity profile measurements,” Appl. Opt. 45(14), 3317–3324 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

J. Phys. E Sci. Instrum. (2)

H. W. Jentink, J. A. J. van Beurden, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, “A compact differential laser Doppler velocimeter using a semiconductor laser,” J. Phys. E Sci. Instrum. 20(10), 1281–1283 (1987).
[CrossRef]

J. Oldengarm and P. Venkatesh, “A simple two-component laser Doppler anemometer using a rotating radial diffraction grating,” J. Phys. E Sci. Instrum. 9(11), 1009–1012 (1976).
[CrossRef]

Meas. Sci. Technol. (2)

K. Plamann, H. Zellmer, J. Czarske, and A. Tünnermann, “Directional discrimination in laser Doppler anemometry (LDA) without frequency shifting using twinned optical fibres in the receiving optics,” Meas. Sci. Technol. 9(11), 1840–1846 (1998).
[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Opt. Lasers Eng. (3)

J. P. Sharpe, “A phase-stepped grating technique for frequency shifting in laser Doppler velocimetry,” Opt. Lasers Eng. 45(11), 1067–1070 (2007).
[CrossRef]

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, “Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV,” Opt. Lasers Eng. 35(1), 41–49 (2001).
[CrossRef]

M. Tirabassi and S. J. Rothberg, “Scanning LDV using wedge prisms,” Opt. Lasers Eng. 47(3-4), 454–460 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Procedia (1)

K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, “Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings,” Phys. Procedia 2(1), 45–51 (2009).
[CrossRef]

Precis. Eng. (1)

M. Uchiyama and K. Hakomori, “A beam scanning LDV to measure velocity profile of unsteady flow,” Precis. Eng. 48, 939–944 (1982) (in Japanese).
[CrossRef]

Rev. Sci. Instrum. (1)

F. Durst, B. Lehmann, and C. Tropea, “Laser-Doppler system for rapid scanning of flow fields,” Rev. Sci. Instrum. 52(11), 1676–1681 (1981).
[CrossRef]

Other (6)

W. N. Sharpe, Jr., Springer Handbook of Experimental Solid Mechanics (Springer, New York, 2008), Section 29.6.

R. Sawada, K. Hane, and E. Higurashi, Optical micro electro mechanical systems (Ohmsha, Tokyo, 2002), Section 5.2. (in Japanese)

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Section 7.2.2.

M. Takahashi, S. Watanabe, M. Kurihara, T. Takeuchi, Y. Deki, S. Takaesu, M. Horie, T. Miyazaki, K. Suzuki, N. Sakuma, A. Kawauchi, and H. Yamazaki, “Tunable Lasers Based on Silica Waveguide Ring Resonators,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWJ1.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Section 7.3.

N. Nakatani, T. Nishikawa, Y. Yoneda, Y. Nakano, and T. Yamada, “Space-correlation measurement of attaching jets by the new scanning laser Doppler velocimeter using a diffraction grating,” in Proceedings of 7th Symp. on Turbulence (University of Missouri-Rolla, 1981), pp. 380–389.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concept of proposed scanning LDV.

Fig. 2
Fig. 2

Geometrical model of transmitting optics in sensor probe.

Fig. 3
Fig. 3

Experimental setup. (a) Optical layout and (b) setup of rotating target.

Fig. 4
Fig. 4

Calculated 1st-order angular dispersion 1 o / for various ϕ i at λ = 1540 nm. d = 1.67 μm.

Fig. 5
Fig. 5

Calculated fringe spacing in the measurement volume Δxs as a function of λ for setup (1) and setup (2).

Fig. 6
Fig. 6

Examples of measured spectra of beat signals for setup (1) for constant angular velocity (4π rad/s). The wavelengths λ are 1530 nm, 1540 nm and 1550 nm.

Fig. 7
Fig. 7

Measured relationship between F(ω, λ) and ω for setup (1) at λ = 1540 nm. Theoretical values are also plotted.

Fig. 8
Fig. 8

Measured values of F(ω, λ)/ω for various λ for setups (1) and (2). Theoretical values are also plotted.

Fig. 9
Fig. 9

Relative measurement positions Lz (λ) – Lz c estimated from measured beat frequencies for various λ for setups (1) and (2). Theoretical values are also plotted.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ m o ( λ ) = sin 1 ( m λ d sin ϕ i ) ,
F ( v , λ ) = 2 v sin ( α + ϕ m o ( λ ) ) λ ,
L z ( λ ) = L x tan ( α + ϕ m o ( λ ) ) ,
Δ x s = λ 2 sin ( α + ϕ m o ( λ ) ) .
d L z d λ = L x sin 2 ( α + ϕ m o ( λ ) ) d ϕ m o d λ .
d ϕ m o d λ = m d cos ϕ m o ( λ ) .
F ( ω , λ ) = 2 ω [ L z ( λ ) L z c ] sin ( α + ϕ 1 o ( λ ) ) λ sin β .

Metrics