Abstract

Spectra measured by remote-sensing Fourier transform infrared spectrometers are often calibrated using two calibration sources. At wavenumbers where the absorption coefficient is large, air within the optical path of the instrument can absorb most calibration-source signal, resulting in extreme errors. In this paper, a criterion in terms of the instrument responsivity is used to identify such wavenumbers within the instrument bandwidth of two remote-sensing Fourier transform infrared spectrometers. Wavenumbers identified by the criterion are found to be correlated with strong absorption line-centers of water vapor. Advantages of using a responsivity-based criterion are demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
    [CrossRef]
  2. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27(15), 3210–3218 (1988).
    [CrossRef] [PubMed]
  3. L. A. Sromovsky, “Radiometric errors in complex Fourier transform spectrometry,” Appl. Opt. 42(10), 1779–1787 (2003).
    [CrossRef] [PubMed]
  4. P. M. Rowe, S. P. Neshyba, and V. P. Walden, “A responsivity-based criterion for accurate calibration of FTIR emission spectra: theoretical development and bandwidth estimation,” Opt. Express 19(6) 5451-5463 (2011)
    [CrossRef] [PubMed]
  5. G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
    [CrossRef]
  6. A. Shimota, H. Kobayashi, and S. Kadokura, “radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator,” Appl. Opt. 38(3), 571–576 (1999).
    [CrossRef]
  7. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
    [CrossRef]
  8. S. Chandrasekhar, Radiative Transfer. (Dover, 1960).
  9. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
    [CrossRef]
  10. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
    [CrossRef]
  11. R. Knuteson, Cooperative Institute for Meteorological Satellite Studies – SSEC, University of Wisconsin-Madison, 1225 W. Dayton St., Madison, WI 53706 (personal communication, 2010).
  12. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
    [CrossRef]
  13. P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
    [CrossRef]
  14. Data from the AERI operated at the North Slope of Alaska is available at http://www.archive.arm.gov .

2011 (1)

2009 (1)

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

2008 (1)

P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
[CrossRef]

2005 (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

2004 (2)

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

2003 (1)

2001 (1)

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

1999 (1)

1988 (1)

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Best, F. A.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Boukabara, S.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Bourdages, L.

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

Brown, L.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Brown, O. B.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

Brown, P. D.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Buijs, H.

Cady-Pereira, K.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Carleer, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chackerianjr, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chrisbenner, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Ciganovich, N. C.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

Clough, S. A.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Coudert, L.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Dedecker, R. G.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

Delamere, J. S.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Dirkx, T. P.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

Drummond, J.

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

Duck, T.

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

Ellington, S. C.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

Eloranta, E.

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

Feltz, W. F.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

Garcia, R. K.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

Hanafin, J. A.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

Howell, H. B.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27(15), 3210–3218 (1988).
[CrossRef] [PubMed]

Iacono, M. J.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Kadokura, S.

Knuteson, R. O.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

Kobayashi, H.

Laporte, D. D.

Lesins, G.

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

Miloshevich, L.

P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
[CrossRef]

Minnett, P. J.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

Mlawer, E. J.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Neshyba, S. P.

Osborne, B. J.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

Revercomb, H. E.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27(15), 3210–3218 (1988).
[CrossRef] [PubMed]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Rowe, P.

P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
[CrossRef]

Rowe, P. M.

Shephard, M. W.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Shimota, A.

Short, J. F.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

Smith, W. L.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27(15), 3210–3218 (1988).
[CrossRef] [PubMed]

Sromovsky, L. A.

Tobin, D. C.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

Turner, D.

P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
[CrossRef]

Walden, V.

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
[CrossRef]

Walden, V. P.

Appl. Opt. (3)

Atmos. Chem. Phys. (1)

G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009).
[CrossRef]

J. Atmos. Ocean. Technol. (4)

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a).
[CrossRef]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b).
[CrossRef]

P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008).
[CrossRef]

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005).
[CrossRef]

Opt. Express (1)

Other (3)

R. Knuteson, Cooperative Institute for Meteorological Satellite Studies – SSEC, University of Wisconsin-Madison, 1225 W. Dayton St., Madison, WI 53706 (personal communication, 2010).

S. Chandrasekhar, Radiative Transfer. (Dover, 1960).

Data from the AERI operated at the North Slope of Alaska is available at http://www.archive.arm.gov .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Estimate of system responsivity (||rm ||) and the standard deviation of rm r ) for an Atmospheric Emitted Radiance Interferometer (AERI), and an estimate of the transmittance of air through the instrument (tAI ). Circles indicate points with large errors.

Fig. 2
Fig. 2

a) The calibrated downwelling radiance (Ls + εL ) measured with an Atmospheric Emitted Radiance Interferometer (AERI) at Eureka, Canada on 1 July 2008 at 0357 UTC, and the Planck functions of the temperature of the cold calibration-source, B(Tc ), and ambient temperature, B(Ta ). A few radiances having significant errors are circled. b) The real part of the ratio of uncalibrated difference spectra for the measurement shown in a). Bounds used to identify spectral data points with large errors are shown. Dots indicate points identified with a criterion in terms of the relative error in the instrument responsivity, σ r /r.

Fig. 3
Fig. 3

a) The calibrated downwelling sky radiance (Ls L) measured with an Atmospheric Emitted Radiance Interferometer (AERI) at the North Slope of Alaska at 0102 UTC on 1 Feb. 2010. Radiances appearing to have large errors are circled. b) The corresponding ratio of uncalibrated difference spectra as well as symmetric and asymmetric bounds used in quality control and points identified using a responsivity criterion (dots). c) The average of calibrated radiances measured over the course of the day (<Ls L>, blue) and the average of spectra corrected using the asymmetric bounds (green dashed). d) <Ls L> (blue) and the averages of spectra corrected using symmetric bounds (red dashed) and the responsivity criterion (dots).

Fig. 4
Fig. 4

An expanded region of a downwelling radiance spectrum centered on the strong water-vapor absorption line at 1521.3 cm−1, where an error of 1410 RU occurs (blue dashed curve; the error is outside the plot limits). Resampling using Fourier transforms causes the error to “ring” into neighboring wavenumbers (green solid line) unless the error is first removed (red dots). This spectrum was obtained at Eureka, Canada at 0648 UTC on 1 July 2008.

Tables (1)

Tables Icon

Table 1 Low-Responsivity Wavenumbers Identified for an Atmospheric Emitted Radiance Interferometer (AERI) Operating from April 2006 to December 2007 at Eureka, Canada

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L s + ε L = Re [ V s V c V h V c ] [ L h L c ] + L c ,
I ( z ) = I ( z 0 ) t ( z 0 , z ) + z 0 z B ( T ( z ' ) ) [ d t ( z ' , z ) d z ' ] d z '
V h = 0.5 η R d t A I L h exp ( i ϕ ) + R d O ,
V h = 0.5 η R d t A I L h exp ( i ϕ ) + R d O + n h exp ( i ϕ ) .
r m ( V h V c ) / ( L h L c )
ε L = ( s f s f c ) ( L h L c ) + ( f r ) ( L c L s ) ,
f x Re [ e x / r 1 + ( e r / r ) ] ,
ε L 2 σ n s 2 r 2 + ( σ n c 2 r 2 ) ( L h L s L h L c ) 2 + ( σ n h 2 r 2 ) ( L c L s L h L c ) 2 .
ε L 2 = ( s 2 f s 2 + f c 2 ) ( L h L c ) 2 + f r 2 ( L c L s ) 2 2 f c f r ( L h L c ) ( L c L s ) ,
L s + ε L = 0.5 f r ( L h + L c ) .

Metrics