Abstract

The coexistence of weakly sech-shaped solitons and strongly dissipative solitons is experimentally observed in an ultra-large net-anomalous-dispersion mode-locked fiber laser for the first time to author’s best knowledge. Both sech-shaped and dissipative solitons appear to be the asymmetrically combined pulse state with one pulse component much smaller than the other. The energy of dissipative solitons is over three orders of magnitude larger than that of sech-shaped solitons. Two different types of pulse-shaping mechanisms coexist in the laser: one is the dissipative processes and the other is the balance between anomalous dispersion and nonlinear Kerr effect. Numerical simulations and analysis confirm the experimental observations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
    [CrossRef]
  2. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
    [CrossRef]
  3. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
    [CrossRef]
  4. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
    [CrossRef]
  5. D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
    [CrossRef]
  6. V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  8. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
    [CrossRef]
  9. D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
    [CrossRef]
  10. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
    [CrossRef]
  11. A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
    [CrossRef] [PubMed]
  12. L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [CrossRef]
  13. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
    [CrossRef] [PubMed]
  14. V. I. Kruglov, D. Méchin, and J. D. Harvey, “All-fiber ring Raman laser generating parabolic pulses,” Phys. Rev. A 81(2), 023815 (2010).
    [CrossRef]
  15. J. H. Im, S. Y. Choi, F. Rotermund, and D. I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
    [CrossRef] [PubMed]
  16. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009).
    [CrossRef] [PubMed]
  17. X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
    [CrossRef] [PubMed]
  18. X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82(6), 063834 (2010).
    [CrossRef]
  19. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [CrossRef]
  20. F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
    [CrossRef]
  21. X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
    [CrossRef] [PubMed]
  22. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
    [CrossRef]
  23. A. Komarov and F. Sanchez, “Structural dissipative solitons in passive mode-locked fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(6), 066201 (2008).
    [CrossRef] [PubMed]
  24. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
    [CrossRef]
  25. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
    [CrossRef] [PubMed]
  26. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fiber laser,” Electron. Lett. 28(1), 67 (1992).
    [CrossRef]
  27. X. M. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82(5), 053808 (2010).
    [CrossRef]
  28. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [CrossRef] [PubMed]
  29. D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
    [CrossRef] [PubMed]
  30. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
    [CrossRef]
  31. G. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
    [CrossRef]
  32. X. Liu and B. Lee, “A fast method for nonlinear schrödinger equation,” IEEE Photon. Technol. Lett. 15(11), 1549–1551 (2003).
    [CrossRef]
  33. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
    [CrossRef] [PubMed]
  34. J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
    [CrossRef] [PubMed]
  35. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [CrossRef]
  36. N. Akhmediev and J. M. Soto-Crespo, “Strongly asymmetric soliton explosions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036613 (2004).
    [CrossRef] [PubMed]
  37. W. Chang, N. Akhmediev, and S. Wabnitz, “Effect of an external periodic potential on pairs of dissipative solitons,” Phys. Rev. A 80(1), 013815 (2009).
    [CrossRef]
  38. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996).
    [CrossRef] [PubMed]
  39. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [CrossRef]
  40. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
    [CrossRef]
  41. S. Chen, “Theory of dissipative solitons in complex Ginzburg-Landau systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 025601 (2008).
    [CrossRef] [PubMed]

2011

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

2010

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[CrossRef]

V. I. Kruglov, D. Méchin, and J. D. Harvey, “All-fiber ring Raman laser generating parabolic pulses,” Phys. Rev. A 81(2), 023815 (2010).
[CrossRef]

J. H. Im, S. Y. Choi, F. Rotermund, and D. I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[CrossRef] [PubMed]

X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82(6), 063834 (2010).
[CrossRef]

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[CrossRef]

X. M. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82(5), 053808 (2010).
[CrossRef]

D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
[CrossRef] [PubMed]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

2009

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
[CrossRef] [PubMed]

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

W. Chang, N. Akhmediev, and S. Wabnitz, “Effect of an external periodic potential on pairs of dissipative solitons,” Phys. Rev. A 80(1), 013815 (2009).
[CrossRef]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[CrossRef]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009).
[CrossRef] [PubMed]

X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[CrossRef] [PubMed]

A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
[CrossRef] [PubMed]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[CrossRef]

2008

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

A. Komarov and F. Sanchez, “Structural dissipative solitons in passive mode-locked fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(6), 066201 (2008).
[CrossRef] [PubMed]

S. Chen, “Theory of dissipative solitons in complex Ginzburg-Landau systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 025601 (2008).
[CrossRef] [PubMed]

2007

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[CrossRef]

2004

N. Akhmediev and J. M. Soto-Crespo, “Strongly asymmetric soliton explosions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036613 (2004).
[CrossRef] [PubMed]

2003

X. Liu and B. Lee, “A fast method for nonlinear schrödinger equation,” IEEE Photon. Technol. Lett. 15(11), 1549–1551 (2003).
[CrossRef]

2000

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[CrossRef] [PubMed]

1997

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[CrossRef]

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

1996

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996).
[CrossRef] [PubMed]

1993

1992

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fiber laser,” Electron. Lett. 28(1), 67 (1992).
[CrossRef]

1990

G. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
[CrossRef]

Abdelalim, M. A.

Afanasjev, V. V.

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996).
[CrossRef] [PubMed]

Agrawal, G.

G. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
[CrossRef]

Akhmediev, N.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

W. Chang, N. Akhmediev, and S. Wabnitz, “Effect of an external periodic potential on pairs of dissipative solitons,” Phys. Rev. A 80(1), 013815 (2009).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef] [PubMed]

N. Akhmediev and J. M. Soto-Crespo, “Strongly asymmetric soliton explosions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036613 (2004).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[CrossRef] [PubMed]

Akhmediev, N. N.

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996).
[CrossRef] [PubMed]

Anis, H.

Ankiewicz, A.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[CrossRef] [PubMed]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[CrossRef]

Apolonski, A.

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[CrossRef]

Bao, Q.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

Cabasse, A.

Chang, W.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

W. Chang, N. Akhmediev, and S. Wabnitz, “Effect of an external periodic potential on pairs of dissipative solitons,” Phys. Rev. A 80(1), 013815 (2009).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Chen, S.

S. Chen, “Theory of dissipative solitons in complex Ginzburg-Landau systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 025601 (2008).
[CrossRef] [PubMed]

Choi, S. Y.

Chong, A.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Chouli, S.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[CrossRef]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

Devine, N.

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef] [PubMed]

Egorov, O.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[CrossRef]

Feng, H.

Gong, Y. K.

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

Grelu, P.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[CrossRef]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef] [PubMed]

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fiber laser,” Electron. Lett. 28(1), 67 (1992).
[CrossRef]

Haboucha, A.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Harvey, J. D.

V. I. Kruglov, D. Méchin, and J. D. Harvey, “All-fiber ring Raman laser generating parabolic pulses,” Phys. Rev. A 81(2), 023815 (2010).
[CrossRef]

Haus, H.

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Haus, H. A.

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

Hu, X. H.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

Ilday, F. O.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Iliew, R.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[CrossRef]

Im, J. H.

Ippen, E.

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Ippen, E. P.

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

Jones, D.

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Kalashnikov, V. L.

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[CrossRef]

Khalil, D. A.

Komarov, A.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov and F. Sanchez, “Structural dissipative solitons in passive mode-locked fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(6), 066201 (2008).
[CrossRef] [PubMed]

Kruglov, V. I.

V. I. Kruglov, D. Méchin, and J. D. Harvey, “All-fiber ring Raman laser generating parabolic pulses,” Phys. Rev. A 81(2), 023815 (2010).
[CrossRef]

Leblond, H.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Lederer, F.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[CrossRef]

Lee, B.

X. Liu and B. Lee, “A fast method for nonlinear schrödinger equation,” IEEE Photon. Technol. Lett. 15(11), 1549–1551 (2003).
[CrossRef]

Li, X.

Lin, A.

Liu, X.

X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82(6), 063834 (2010).
[CrossRef]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[CrossRef]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
[CrossRef] [PubMed]

X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
[CrossRef] [PubMed]

X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[CrossRef] [PubMed]

X. Liu and B. Lee, “A fast method for nonlinear schrödinger equation,” IEEE Photon. Technol. Lett. 15(11), 1549–1551 (2003).
[CrossRef]

Liu, X. M.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

X. M. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82(5), 053808 (2010).
[CrossRef]

Logvin, Y.

Loh, K.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

Lu, H.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
[CrossRef] [PubMed]

Lu, K.

Mao, D.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
[CrossRef] [PubMed]

Martel, G.

Méchin, D.

V. I. Kruglov, D. Méchin, and J. D. Harvey, “All-fiber ring Raman laser generating parabolic pulses,” Phys. Rev. A 81(2), 023815 (2010).
[CrossRef]

Nelson, L. E.

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[CrossRef] [PubMed]

Oktem, B.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Oudar, J. L.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fiber laser,” Electron. Lett. 28(1), 67 (1992).
[CrossRef]

Qian, L. J.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[CrossRef]

Renninger, W.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fiber laser,” Electron. Lett. 28(1), 67 (1992).
[CrossRef]

Rotermund, F.

Salhi, M.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Sanchez, F.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov and F. Sanchez, “Structural dissipative solitons in passive mode-locked fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(6), 066201 (2008).
[CrossRef] [PubMed]

Soto-Crespo, J. M.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef] [PubMed]

N. Akhmediev and J. M. Soto-Crespo, “Strongly asymmetric soliton explosions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036613 (2004).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[CrossRef] [PubMed]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996).
[CrossRef] [PubMed]

Sun, H.

Tamura, K.

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[CrossRef]

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Wabnitz, S.

W. Chang, N. Akhmediev, and S. Wabnitz, “Effect of an external periodic potential on pairs of dissipative solitons,” Phys. Rev. A 80(1), 013815 (2009).
[CrossRef]

Wang, L.

Wang, L. R.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

Wang, Y.

Wise, F. W.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Wu, X.

Xie, G. Q.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[CrossRef]

Yeom, D. I.

Zavyalov, A.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[CrossRef]

Zhang, H.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[CrossRef]

Zhao, W.

Appl. Phys. B

L. E. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Electron. Lett.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fiber laser,” Electron. Lett. 28(1), 67 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
[CrossRef]

X. Liu and B. Lee, “A fast method for nonlinear schrödinger equation,” IEEE Photon. Technol. Lett. 15(11), 1549–1551 (2003).
[CrossRef]

Laser Photon. Rev.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Laser Phys. Lett.

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

Nat. Photonics

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Opt. Commun.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. Bao, and K. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[CrossRef]

Opt. Express

A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
[CrossRef] [PubMed]

X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
[CrossRef] [PubMed]

J. H. Im, S. Y. Choi, F. Rotermund, and D. I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[CrossRef] [PubMed]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009).
[CrossRef] [PubMed]

X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[CrossRef] [PubMed]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[CrossRef] [PubMed]

D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
[CrossRef] [PubMed]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Lett. A

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Phys. Rev. A

W. Chang, N. Akhmediev, and S. Wabnitz, “Effect of an external periodic potential on pairs of dissipative solitons,” Phys. Rev. A 80(1), 013815 (2009).
[CrossRef]

V. I. Kruglov, D. Méchin, and J. D. Harvey, “All-fiber ring Raman laser generating parabolic pulses,” Phys. Rev. A 81(2), 023815 (2010).
[CrossRef]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[CrossRef]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[CrossRef]

X. M. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82(5), 053808 (2010).
[CrossRef]

X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82(6), 063834 (2010).
[CrossRef]

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different solitons-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[CrossRef]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[CrossRef]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode- locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. Chen, “Theory of dissipative solitons in complex Ginzburg-Landau systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 025601 (2008).
[CrossRef] [PubMed]

A. Komarov and F. Sanchez, “Structural dissipative solitons in passive mode-locked fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(6), 066201 (2008).
[CrossRef] [PubMed]

N. Akhmediev and J. M. Soto-Crespo, “Strongly asymmetric soliton explosions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036613 (2004).
[CrossRef] [PubMed]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(1), 1190–1201 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[CrossRef] [PubMed]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the proposed laser cavity. EDF, erbium-doped fiber; SMF, single-mode fiber; WDM, wavelength-division multiplexed; PC, polarization controller; PS-ISO, polarization-sensitive isolator; PAPM, polarization additive pulse mode-locking; LD, laser diode; PBS, polarization beam splitter.

Fig. 2
Fig. 2

Results of experimental observations. Output optical spectrum at the pump power (a) P≈10 mW, (b) P = 18 mW, and (c) P = 21 mW. (d) Autocorrelation trace and (e) oscilloscope trace at P = 18 mW. In (d), the solid and dashed curves denote the experimental results and the sech2-fit curve, respectively.

Fig. 3
Fig. 3

Output optical spectra of u and v components of pulses at the pump power P = 18 mW. The ratio RP of peak power of u and v components is about 11.5. The y-axis is the linear scale, instead of the logarithmic scale in Fig. 2(b). The u and v components are indicated by the arrows.

Fig. 4
Fig. 4

Results of experimental observations at the pump power P = 29 mW. Oscilloscope traces (a) from 0 to 100 μs, (b) from 0 to 2.5 μs, and (c) from 3.2 to 3.4 μs. (d) Output optical spectrum. The u and v components are indicated in (d) by the arrows and the ratio RP of peak power of u and v components is about 11.1.

Fig. 5
Fig. 5

Results of experimental observations: (a) Oscilloscope traces at the pump power P = 40 and 50 mW; (b) Output optical spectra at P = 50, 150, 300, and 450 mW from bottom to top and the y-axis is the linear scale. Inset: output optical spectra are shown as the logarithmic scale for the y-axis.

Fig. 6
Fig. 6

Results of numerical simulations: (a) Pulse profile, (b) optical spectrum, (c) autocorrelation trace, and (d) instantaneous frequency δω of the pulses. The u and v components are indicated in (a) and (b) by the arrows. The ratio RP of peak intensity of u and v components of pulses is about 11.2. The pulse duration and the spectral width are 3.1 ps and 0.9 nm, respectively. δω is nearly zero across the pulse width.

Fig. 7
Fig. 7

Profiles of flat-top soliton solutions with the line gain σ = σ 1 ( 1 10 n ) at n = 5, 9, 13, and 17.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

u z = α 2 u δ u T i β 2 2 2 u T 2 + i γ ( | u | 2 + 2 3 | v | 2 ) u + g 2 u + g 2 Ω g 2 2 u T 2 , v z = α 2 v + δ v T i β 2 2 2 v T 2 + i γ ( | v | 2 + 2 3 | u | 2 ) v + g 2 v + g 2 Ω g 2 2 v T 2 ,
g = g 0 exp ( E p / E s ) ,
T i = sin 2 ( θ ) sin 2 ( φ ) + cos 2 ( θ ) cos 2 ( φ ) + 0.5 sin ( 2 θ ) sin ( 2 φ ) cos ( ϕ 1 + ϕ 2 ) ,
i ψ z + D 2 ψ t t + | ψ | 2 ψ = i σ ψ + i ε | ψ | 2 ψ + i β ψ t t + i μ | ψ | 4 ψ v | ψ | 4 ψ .
ψ ( z , t ) = A ( t ) exp [ i Φ ( t ) i ω z ] ,
Φ ( t ) = d ln [ A ( t ) ] ,
F 2 F 2 + 8 υ 8 β d d 2 + 3 F 2 + 8 ( 2 β ε ) 3 d ( 1 + 4 β 2 ) F 4 σ d β + β d 2 = 0 ,
F ( t ) = 2 F 1 F 2 ( F 1 + F 2 ) ( F 1 F 2 ) cosh ( 2 η F 1 | F 2 | t ) .
F 1 , 2 = 8 β d d 2 + 3 6 υ d ( 1 + 4 β 2 ) [ ( 2 β ε ) ± ( 2 β ε ) 2 + 18 σ υ d 2 ( 1 + 4 β 2 ) 2 ( d β + β d 2 ) ( 8 β d d 2 + 3 ) ] .

Metrics