Abstract

We report the first experimental demonstration of Bragg grating-based nonlinear switching in a bismuth-oxide single-mode fiber. Exploiting the strong χ(3)-nonlinearity of this fiber in a cross-phase modulation scheme, we change the transmission of a probe near the grating stop band from 90 % to 20 %, a 6.5 dB extinction ratio, at powers as low as 55 W. This is an 18-fold improvement in the switching power compared to the best demonstrations in silica. The experimental results agree well with numerical simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Slusher and B. J. Eggleton, Nonlinear photonic crystals , chapter 1 (Springer-Verlag, 2003).
  2. A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg grating,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
    [CrossRef]
  4. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259–261 (1998).
    [CrossRef]
  5. N. G. R. Broderick, D. J. Richardson, and M. Ibsen, “Nonlinear switching in a 20-cm fiber Bragg grating,” Optics Lett. 25, 536–538 (2000).
    [CrossRef]
  6. I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 16, 5083–5089 (2009).
    [CrossRef]
  7. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [CrossRef] [PubMed]
  8. S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
    [CrossRef]
  9. R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).
  10. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000).
    [CrossRef]
  11. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010).
    [CrossRef]
  12. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
    [CrossRef]
  13. P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24, 685–687 (1999).
    [CrossRef]
  14. H. C. Nguyen, D.-I. Yeom, E. C. Magi, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber,” J. Opt. Soc. Am. B 25, 1393–1401 (2008).
    [CrossRef]
  15. N. Sugimoto, H. Kanbara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response on Bi2O3 - B2O3 - SiO2 glasses,” J. Opt. Soc. Am. B 16, 1904–1908 (1999).
    [CrossRef]
  16. K. Kikuchi, K. Taira, and N. Sugimoto,“Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
    [CrossRef]
  17. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006).
    [CrossRef] [PubMed]
  18. J. T. Gopinath, H. M. Shen, H. Sotobayashl, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 μm,” Opt. Express 12, 5697 (2004).
    [CrossRef] [PubMed]
  19. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
    [CrossRef] [PubMed]
  20. P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
    [CrossRef]
  21. D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
    [CrossRef]
  22. J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992).
    [CrossRef]
  23. I. C. M. Littler, T. Grujic, and B. J. Eggleton, “Photothermal effects in fiber Bragg gratings,” Appl. Opt. 45, 4679–4685 (2006).
    [CrossRef] [PubMed]

2010 (2)

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010).
[CrossRef]

2009 (1)

I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 16, 5083–5089 (2009).
[CrossRef]

2008 (1)

2007 (1)

P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
[CrossRef]

2006 (2)

2005 (1)

2004 (1)

2002 (1)

K. Kikuchi, K. Taira, and N. Sugimoto,“Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

2000 (2)

N. G. R. Broderick, D. J. Richardson, and M. Ibsen, “Nonlinear switching in a 20-cm fiber Bragg grating,” Optics Lett. 25, 536–538 (2000).
[CrossRef]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

1995 (1)

1994 (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

1992 (2)

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992).
[CrossRef]

1990 (1)

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Aitchison, J. S.

Asimakis, S.

Avramopoulos, H.

P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
[CrossRef]

Bakopoulos, P.

P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
[CrossRef]

Bieber, A. E.

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Bolger, J. A.

I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 16, 5083–5089 (2009).
[CrossRef]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Broderick, N. G. R.

Brown, T. G.

A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995).
[CrossRef] [PubMed]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000).
[CrossRef]

Corcoran, B.

I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 16, 5083–5089 (2009).
[CrossRef]

De La Rue, R. M.

de Sterke, C. M.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Eggleton, B. J.

Gopinath, J. T.

Grobnic, D.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

Grujic, T.

Hasegawa, T.

Hibino, Y.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Hirao, K.

Ibsen, M.

Ippen, E. P.

Kabakova, I. V.

I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010).
[CrossRef]

I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 16, 5083–5089 (2009).
[CrossRef]

Kanbara, H.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).

Kikuchi, K.

Koizumi, F.

Krauss, T. F.

Kuhlmey, B. T.

Laming, R. I.

Larochelle, S.

J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992).
[CrossRef]

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Lauzon, J.

J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992).
[CrossRef]

Lee, J. H.

Littler, I. C. M.

Lu, P.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

Magi, E. C.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000).
[CrossRef]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000).
[CrossRef]

Mihailov, S. J.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

Millar, P.

Mizrahi, V.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Nagashima, T.

Nguyen, H. C.

Ohara, S.

Ouelette, F.

J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Richardson, D. J.

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Shen, H. M.

Shimizugawa, Y.

Slusher, R. E.

Smelser, C. W.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

Sotobayashl, H.

Stegeman, G.I.

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Sugimoto, N.

Taira, K.

K. Kikuchi, K. Taira, and N. Sugimoto,“Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

Tanaka, K.

Tanemura, T.

Taverner, D.

Tiberio, R. C.

Vyrsokinos, K

P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
[CrossRef]

Walker, R. B.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

Yeom, D.-I.

Zouraraki, O.

P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[CrossRef]

Electron. Lett. (2)

K. Kikuchi, K. Taira, and N. Sugimoto,“Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007).
[CrossRef]

IEEE Photon. Techn. Lett. (1)

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Optics Lett. (1)

N. G. R. Broderick, D. J. Richardson, and M. Ibsen, “Nonlinear switching in a 20-cm fiber Bragg grating,” Optics Lett. 25, 536–538 (2000).
[CrossRef]

Photon. Tech. Lett. (1)

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Other (2)

R. E. Slusher and B. J. Eggleton, Nonlinear photonic crystals , chapter 1 (Springer-Verlag, 2003).

R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Switching principle: pump pulse (a) dynamically affects the position of the stopgap (b), resulting in positive (e) and negative (f) modulation of the probe power at the short (c) and long (d) wavelength sides of the gap.

Fig. 2.
Fig. 2.

Measured (solid line) and calculated (dotted line) FBG transmission spectrum. λ 1 = 1538.88 nm and λ 2 = 1539.23 nm are measurement wavelengths in Fig. 4.

Fig. 3.
Fig. 3.

Schematic of the experimental setup.

Fig. 4.
Fig. 4.

Oscilloscope traces of the probe, switched by a 17–55 W pump pulse. The probe wavelength is (a) on the blue- and (b) red-sides of the bandgap (see Fig. 2). (c) and (d) are corresponding simulations.

Fig. 5.
Fig. 5.

(a) Measured (markers) and simulated (lines) switching contrast 17–55 W pump peak powers and on-off and off-on switching conditions as shown in Fig. 4 (a–d). (b) Switching contrast for different probe wavelength across the gap and fixed pump power of 55 W. Measurements are precluded for wavelengths in the shadowed region.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ NL λ B = 2 b n 2 P n 0 A eff ,

Metrics