Abstract

High speed and high extinction ratio silicon optical modulator using carrier depletion is experimentally demonstrated. The phase-shifter is a 1.8 mm-long PIPIN diode which is integrated in a Mach Zehnder interferometer. 8.1 dB Extinction Ratio at 10 Gbit/s is obtained simultaneously with optical loss as low as 6 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).
  2. A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
    [CrossRef]
  3. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  4. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23(1), 123–129 (1987).
    [CrossRef]
  5. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
    [CrossRef] [PubMed]
  6. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
    [CrossRef]
  7. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fédéli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [CrossRef] [PubMed]
  8. D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fédéli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
    [CrossRef] [PubMed]
  9. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
    [CrossRef]
  10. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
    [CrossRef]
  11. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
    [CrossRef] [PubMed]
  12. J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode,” Opt. Express 17(18), 15520–15524 (2009).
    [CrossRef] [PubMed]
  13. D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
    [CrossRef]
  14. G. Rasigade, D. Marris-Morini, L. Vivien, and E. Cassan, “Performance evolutions of carrier depletion silicon optical modulators: from PN to PIPIN diodes,” IEEE J. Quant. Electron. 16(1), 179–184 (2010).
    [CrossRef]
  15. G. Rasigade, X. Le Roux, D. Marris-Morini, E. Cassan, and L. Vivien, “Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter,” Opt. Lett. 35(21), 3700–3702 (2010).
    [CrossRef] [PubMed]
  16. G. T. Reed, and A. P. Knights, Silicon Photonics, an Introduction (Wiley, 2004).

2010

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fédéli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[CrossRef] [PubMed]

G. Rasigade, D. Marris-Morini, L. Vivien, and E. Cassan, “Performance evolutions of carrier depletion silicon optical modulators: from PN to PIPIN diodes,” IEEE J. Quant. Electron. 16(1), 179–184 (2010).
[CrossRef]

G. Rasigade, X. Le Roux, D. Marris-Morini, E. Cassan, and L. Vivien, “Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter,” Opt. Lett. 35(21), 3700–3702 (2010).
[CrossRef] [PubMed]

2009

2008

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

2007

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

2005

1987

A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23(1), 123–129 (1987).
[CrossRef]

Ang, K.-W.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Asghari, M.

Augendre, E.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Bakir, B. B.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Bennett, B. R.

A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23(1), 123–129 (1987).
[CrossRef]

Bordel, D.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Bowers, J. E.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Brimont, A.

Brision, S.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Cassan, E.

G. Rasigade, D. Marris-Morini, L. Vivien, and E. Cassan, “Performance evolutions of carrier depletion silicon optical modulators: from PN to PIPIN diodes,” IEEE J. Quant. Electron. 16(1), 179–184 (2010).
[CrossRef]

G. Rasigade, X. Le Roux, D. Marris-Morini, E. Cassan, and L. Vivien, “Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter,” Opt. Lett. 35(21), 3700–3702 (2010).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Crozat, P.

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Cunningham, J. E.

Damlencourt, J. F.

Dong, F.

Dong, P.

Dumon, P.

Fang, A. W.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Fang, Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Fédéli, J. M.

Fédéli, J.-M.

Fédéli, J-M

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Feng, D.

Feng, N.-N.

Franck, T.

Gardes, F. Y.

Gilbert, K.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Grosse, P.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Harduin, J.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Hodge, D.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Jones, R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Keil, U. D.

Kim, G.

Kim, I. G.

Koch, B. R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Krauss, T. F.

Krishnamoorthy, A. V.

Kuo, Y.-H.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Kwong, D.-L.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

Le Roux, X.

G. Rasigade, X. Le Roux, D. Marris-Morini, E. Cassan, and L. Vivien, “Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter,” Opt. Lett. 35(21), 3700–3702 (2010).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lecunff, Y.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

Li, G.

Liang, D.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Liang, H.

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

Liao, S.

Liow, T.-Y.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

Lively, E.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Lo, G.-Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Marris-Morini, D.

Martí, J.

Messaoudène, S.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Milesi, F.

Morse, M.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

O’Faolain, L.

Olivier, N.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Osmond, J.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

Park, J. W.

Philippe, P.

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Rasigade, G.

G. Rasigade, D. Marris-Morini, L. Vivien, and E. Cassan, “Performance evolutions of carrier depletion silicon optical modulators: from PN to PIPIN diodes,” IEEE J. Quant. Electron. 16(1), 179–184 (2010).
[CrossRef]

G. Rasigade, X. Le Roux, D. Marris-Morini, E. Cassan, and L. Vivien, “Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter,” Opt. Lett. 35(21), 3700–3702 (2010).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fédéli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

Reed, G. T.

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

Samara-Rubio, D.

Sanchis, P.

Shafiiha, R.

Song, J.-F.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Soref, A.

A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23(1), 123–129 (1987).
[CrossRef]

Thomson, D. J.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

Vivien, L.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

Xiong, Y.-Z.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

You, J.-B.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

Yu, M.-B.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Zheng, D.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

Electron. Lett.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[CrossRef]

IEEE J. Quant. Electron.

A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23(1), 123–129 (1987).
[CrossRef]

G. Rasigade, D. Marris-Morini, L. Vivien, and E. Cassan, “Performance evolutions of carrier depletion silicon optical modulators: from PN to PIPIN diodes,” IEEE J. Quant. Electron. 16(1), 179–184 (2010).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach Zehnder modulator,” IEEE J. Sel. Top. Quant. Electron. 16(1), 159–164 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg Reflector Silicon evanescent laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008).
[CrossRef]

Opt. Express

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fédéli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fédéli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
[CrossRef] [PubMed]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[CrossRef] [PubMed]

J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode,” Opt. Express 17(18), 15520–15524 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Proc. IEEE

D. Marris-Morini, L. Vivien, G. Rasigade, E. Cassan, J. M. Fédéli, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

SPIE

B. B. Bakir, N. Olivier, P. Grosse, S. Messaoudène, S. Brision, E. Augendre, P. Philippe, K. Gilbert, D. Bordel, J. Harduin, and J-M Fédéli, “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” SPIE 7719 (2010).

Other

G. T. Reed, and A. P. Knights, Silicon Photonics, an Introduction (Wiley, 2004).

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators an germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quant. Electron. 16(1), 307–315 (2010)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic view of lateral PIPIN phase shifter; (b) Optical mode profile at 1.55 µm ; (c) Optical microscope view of the MZI modulator.

Fig. 2
Fig. 2

(a) Modulator transmission as a function of the wavelength for different applied bias. (b) Zoom of the transmission for different applied bias voltages: at a wavelength of 1561 nm optical loss of 6 dB and extinction ratio of 8 dB are simultaneously obtained. (c) VπLπ as a function of the reverse bias deduced from (a) VπLπ equals to 6 V.cm for reverse bias larger than 4 V, and 4 V.cm at a reverse bias of 2 V.

Fig. 3
Fig. 3

Extinction ratio at 10 Gbit/s as a function of the wavelength (experimental values are the red dots).

Fig. 4
Fig. 4

Optical eye diagram and extinction ratio for different wavelengths. (a): ER = 1.8 dB at 1561 nm, (b): ER = 3.6 dB at 1562 nm, (c): ER = 6.2 dB at 1563 nm, (d): ER = 8.1 dB at 1564 nm.

Tables (1)

Tables Icon

Table 1 Performances Comparison with Silicon Mach Zehnder Modulators in the Literature

Metrics