Abstract

Three dimensional (3D) ion beam lithography (IBL) is used to directly pattern 3D photonic crystal (PhC) structures in crystalline titania. The process is maskless and direct write. The slanted pore 3D structures with pore diameters of 100 nm having aspect ratio of 8 were formed. It is shown that chemical enhancement of titania removal up to 5.2 times is possible in XeF2 gas for the closest nozzle-to-sample distance; the enhancement was ∼ 1.5 times for the actual 3D patterning due to a sample tilt. Tolerances of structural parameters and optimization of IBL processing required for the fabrication of PhCs with full photonic bandgap in visible spectral range in rutile are outlined. Application potential of 3D-IBL is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. S. John, “Loalization of light: theory of photonic band gap materials,” in Photonic band gap materials , C. Sokoulis, ed. (Kluwer, The Netherlands, 1996).
  4. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  5. S. Johnson and J. D. Joannopoulos, Photonic crystals: The Road From Theory to Practice (Kluwer, Dordrecht, The Netherlands, 2002).
  6. T. F. Krauss and R. M. de La Rue, “Photonic crystals in the optical regime - past, present and future,” Prog. Quantum Electron . 23, 51–96 (1999).
    [CrossRef]
  7. S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [CrossRef] [PubMed]
  8. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
    [CrossRef] [PubMed]
  9. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. 10, 283–295 (1993).
    [CrossRef]
  10. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
    [CrossRef]
  11. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
    [CrossRef]
  12. K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
    [CrossRef]
  13. F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).
  14. J. Schilling and A. Scherer, “3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap,” Photon. Nanostr.: Fund. and Appl. 3, 90–95 (2005).
    [CrossRef]
  15. G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
    [CrossRef] [PubMed]
  16. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
    [CrossRef]
  17. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005).
    [CrossRef]
  18. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
    [CrossRef]
  19. O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
    [CrossRef]
  20. J. Winkler, Titanium dioxide (Vincentz Network, Hannover, 2003).
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  22. T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
    [CrossRef]
  23. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
    [CrossRef] [PubMed]
  24. L. Tang and T. Yoshie, “Woodpile photonic crystal fabricated in GaAs by two-directional etching method,” J. Vac. Sci. Technol. B 28, 301–303 (2010).
    [CrossRef]
  25. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
    [CrossRef] [PubMed]
  26. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. B 78, 023825 (2008).
  27. S. John and R. Z. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
    [CrossRef]

2011 (1)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

2010 (1)

L. Tang and T. Yoshie, “Woodpile photonic crystal fabricated in GaAs by two-directional etching method,” J. Vac. Sci. Technol. B 28, 301–303 (2010).
[CrossRef]

2009 (1)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

2008 (4)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. B 78, 023825 (2008).

S. John and R. Z. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

2007 (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

2005 (5)

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[CrossRef]

J. Schilling and A. Scherer, “3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap,” Photon. Nanostr.: Fund. and Appl. 3, 90–95 (2005).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

2003 (1)

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

1999 (1)

T. F. Krauss and R. M. de La Rue, “Photonic crystals in the optical regime - past, present and future,” Prog. Quantum Electron . 23, 51–96 (1999).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1996 (1)

S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

1993 (1)

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Arrington, C. L.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Bao, K.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Barnes, W.

S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. B 78, 023825 (2008).

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Dai, T.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

de La Rue, R. M.

T. F. Krauss and R. M. de La Rue, “Photonic crystals in the optical regime - past, present and future,” Prog. Quantum Electron . 23, 51–96 (1999).
[CrossRef]

Deubel, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

El-kady, I.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Ellis, A. R.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Fischer, A. J.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[CrossRef] [PubMed]

Fleming, J. G.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Gan, Z. H.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Hermatschweiler, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

Hudgens, J. J.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Imada, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Ishizaki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

S. Johnson and J. D. Joannopoulos, Photonic crystals: The Road From Theory to Practice (Kluwer, Dordrecht, The Netherlands, 2002).

John, S.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. B 78, 023825 (2008).

S. John and R. Z. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

S. John, “Loalization of light: theory of photonic band gap materials,” in Photonic band gap materials , C. Sokoulis, ed. (Kluwer, The Netherlands, 1996).

Johnson, S.

S. Johnson and J. D. Joannopoulos, Photonic crystals: The Road From Theory to Practice (Kluwer, Dordrecht, The Netherlands, 2002).

Juodkazis, S.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

Kang, X.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Kannari, K.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

Kitson, S.

S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Koleske, D. D.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[CrossRef] [PubMed]

Kondo, T.

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005).
[CrossRef]

Krauss, T. F.

T. F. Krauss and R. M. de La Rue, “Photonic crystals in the optical regime - past, present and future,” Prog. Quantum Electron . 23, 51–96 (1999).
[CrossRef]

Kravitz, S. H.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Lee, Y.-J.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[CrossRef] [PubMed]

Leonard, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Mani, S.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

McCormick, F. B.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Misawa, H.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

Mizeikis, V.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

Mondia, J.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Nakamori, T.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Noda, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Okano, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Ota, Y.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Ozin, G.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Pérez-Willard, F.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

Peters, D. W.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Sambles, J.

S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Scherer, A.

J. Schilling and A. Scherer, “3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap,” Photon. Nanostr.: Fund. and Appl. 3, 90–95 (2005).
[CrossRef]

Schilling, J.

J. Schilling and A. Scherer, “3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap,” Photon. Nanostr.: Fund. and Appl. 3, 90–95 (2005).
[CrossRef]

Schmidt, C.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Seet, K. K.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

Subramania, G.

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[CrossRef] [PubMed]

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Suzuki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Sweatt, M. W. W. C.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Takahashi, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Tang, L.

L. Tang and T. Yoshie, “Woodpile photonic crystal fabricated in GaAs by two-directional etching method,” J. Vac. Sci. Technol. B 28, 301–303 (2010).
[CrossRef]

Tetreault, N.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

Toader, O.

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[CrossRef]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Tuck, M. R.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

van Driel, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Verley, J. C.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

von Freymann, G.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

Wang, R. Z.

S. John and R. Z. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

Wegener, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

Wegst, U. G. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

Williams, J. D.

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Winkler, J.

J. Winkler, Titanium dioxide (Vincentz Network, Hannover, 2003).

Xiong, C.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Xu, J.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. 10, 283–295 (1993).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yoshie, T.

L. Tang and T. Yoshie, “Woodpile photonic crystal fabricated in GaAs by two-directional etching method,” J. Vac. Sci. Technol. B 28, 301–303 (2010).
[CrossRef]

Zhang, B.

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Adv. Mater. (1)

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005).
[CrossRef]

Appl. Phys. A (1)

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

IEEE J. Selec. Topics Quant Electr. (1)

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

L. Tang and T. Yoshie, “Woodpile photonic crystal fabricated in GaAs by two-directional etching method,” J. Vac. Sci. Technol. B 28, 301–303 (2010).
[CrossRef]

Microelectr. Eng. (1)

T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008).
[CrossRef]

Nanotechnol. (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005).
[CrossRef]

Nat. Mater. (1)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[CrossRef] [PubMed]

Nat. Photon (1)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011).
[CrossRef]

Nature (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000).
[CrossRef] [PubMed]

Photon. Nanostr.: Fund. and Appl. (1)

J. Schilling and A. Scherer, “3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap,” Photon. Nanostr.: Fund. and Appl. 3, 90–95 (2005).
[CrossRef]

Phys. Rev. A (1)

S. John and R. Z. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008).
[CrossRef]

Phys. Rev. B (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. B 78, 023825 (2008).

Phys. Rev. E (1)

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Prog. Quantum Electron (1)

T. F. Krauss and R. M. de La Rue, “Photonic crystals in the optical regime - past, present and future,” Prog. Quantum Electron . 23, 51–96 (1999).
[CrossRef]

Other (6)

S. John, “Loalization of light: theory of photonic band gap materials,” in Photonic band gap materials , C. Sokoulis, ed. (Kluwer, The Netherlands, 1996).

S. Johnson and J. D. Joannopoulos, Photonic crystals: The Road From Theory to Practice (Kluwer, Dordrecht, The Netherlands, 2002).

J. Winkler, Titanium dioxide (Vincentz Network, Hannover, 2003).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010).
[CrossRef] [PubMed]

F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Slanted-pore SP 2 ( 1 ) square structure [19]; ends of the arrows are on the depth c from surface. For the full photonic bandgap at 633 nm in TiO2-rutile: a = 260 nm, c = 1.4a = 363 nm, r = 0.31a = 80.6 nm. (b) The “drilling map” on the (001)-plane of rutile with the angle to normal α=arctan(a 2 /c)=45.3° . The circles mark diameters of the holes. (c) The unit cell.

Fig. 2.
Fig. 2.

(a) Photonic bands (grey) and gap (white) in terms of the normalized frequency, ωn ωa/(2πc). The marker representing parameters of the designed structure. Inset shows the slanted pore SP 2 ( 1 ) PhC. (b) The width of the bandgap, Δω/ω (%), vs the air filling factor of the SP 2 ( 1 ) structure for the dielectric constant of ε = 7.4 (TiO2-rutile). (c) Width of PBG vs the pore radius normalized to the period a.

Fig. 3.
Fig. 3.

Scanning ion microscopy images of the FIB cross section of a PhC structure after one (a) and two (b) directional pore recording; (c) is a closeup view of (b). Sample is at a π/4 tilt angle; designed pore radius r = 40 nm (the actual radius ∼ 50 nm). The arrows depict direction of FIB processing, dashed-lines in (a) and (c) demarcate the TiO2-W boundary, and d is the depth of the structure. Note, the cross section in (a) is not centered at the pores; partial filling of pores by W is observed close to the surface (c).

Fig. 4.
Fig. 4.

Length of channel at different diameters, 2r, measured by cross sectioning and imaging with the scanning ion microscopy; lines are eye guides.

Fig. 5.
Fig. 5.

Chemical enhancement of ion processing of titania. Scanning ion microscopy images of the TiO2 surface processed without (region (1); as in Fig. 3) and with (region (2,3)) chemical enhancement provided by the XeF2 gas. The region (3) corresponds to a ∼ 1 mm nozzle (of XeF2) distance to the substrate as in the actual tilted drilling shown in Fig. 3.

Fig. 6.
Fig. 6.

FDTD simulated transmission spectra at normal incidence for different pore radii, r, of slanted pore SP 2 ( 1 ) PhC with the pore length: l = 1.5 μm (a) and 1 μm (b). The insets shows the SP 2 ( 1 ) structure of the volume fraction required for the full photonic bandgap at r = 80 nm. (c) Angular transmission spectra for the r = 80 nm and l = 1.5 μm-thick structure. Angle of incidence, Θ, polarization is linear.

Fig. 7.
Fig. 7.

Scanning ion microscopy images of a SP 2 ( 1 ) PhC pattern using an anti-charging coating (∼ 10 nm of Pt). The top- (at corners) and tilted-view (two at the sides) markers facilitate precise toggling between +π/4 (the left marker) and –π/4 (right) to the normal in a multi-step hole drilling using trepanning and concentric scans.

Metrics