Abstract

Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  5. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
    [CrossRef] [PubMed]
  6. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Express 13(6), 2007–2012 (2005).
    [CrossRef] [PubMed]
  7. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  8. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
    [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  11. N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley Interscience, 2006).
  12. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
    [CrossRef]
  13. W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photon. J. 1(2), 99–118 (2009).
    [CrossRef]
  14. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [CrossRef]
  15. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
    [CrossRef]
  16. I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009).
    [CrossRef]
  17. S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
    [CrossRef] [PubMed]
  18. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  19. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
    [CrossRef]
  20. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [CrossRef]
  21. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  22. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [CrossRef]
  23. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  24. W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
    [CrossRef]
  25. Y. H. Yuan, J. A. He, J. S. Liu, and J. Q. Yao, “Proposal of an electrically controlled terahertz switch based on liquid-crystal-filled dual-metallic grating structures,” Appl. Opt. 49(31), 6092–6097 (2010).
    [CrossRef]
  26. W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
    [CrossRef]
  27. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [CrossRef] [PubMed]
  28. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. A. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
    [CrossRef] [PubMed]
  29. G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
    [CrossRef]
  30. E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17(18), 16046–16058 (2009).
    [CrossRef] [PubMed]
  31. G.T.A. Kovacs, Micromachined Transducers Sourcebook (McGraw-Hill 1998).
  32. C. Liu and Y. W. Li, “Micromachined magnetic actuators using electroplated permalloy,” IEEE Trans. Magn. 35(3), 1976–1985 (1999).
    [CrossRef]
  33. W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998).
    [CrossRef]
  34. Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
    [CrossRef]
  35. S. Guan and B. J. Nelson, “Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators,” J. Magn. Magn. Mater. 292, 49–58 (2005).
    [CrossRef]
  36. D. P. Arnold and N. G. Wang, “Permanent Magnets for MEMS,” J. Microelectromech. Syst. 18(6), 1255–1266 (2009).
    [CrossRef]
  37. Computer Simulation Technology, http://www.cst.com
  38. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [CrossRef] [PubMed]
  39. F.P. Beer, E.R. Johnston Jr., J.T. DeWolf, D. Mazurek, Mechanics of Materials (McGraw-Hill 2009).
  40. W. N. Sharpe, “Mechanical properties of MEMS materials,” in Proceedings of IEEE Semiconductor Device Research Symposium (IEEE 2001), pp. 416–417.
  41. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
    [CrossRef]

2010

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. A. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
[CrossRef]

Y. H. Yuan, J. A. He, J. S. Liu, and J. Q. Yao, “Proposal of an electrically controlled terahertz switch based on liquid-crystal-filled dual-metallic grating structures,” Appl. Opt. 49(31), 6092–6097 (2010).
[CrossRef]

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

2009

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

D. P. Arnold and N. G. Wang, “Permanent Magnets for MEMS,” J. Microelectromech. Syst. 18(6), 1255–1266 (2009).
[CrossRef]

E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17(18), 16046–16058 (2009).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009).
[CrossRef]

2008

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
[CrossRef]

2007

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

2006

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

2005

S. Guan and B. J. Nelson, “Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators,” J. Magn. Magn. Mater. 292, 49–58 (2005).
[CrossRef]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Express 13(6), 2007–2012 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2004

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

2002

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999

C. Liu and Y. W. Li, “Micromachined magnetic actuators using electroplated permalloy,” IEEE Trans. Magn. 35(3), 1976–1985 (1999).
[CrossRef]

1998

W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Akin, T.

Allen, M. G.

W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998).
[CrossRef]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009).
[CrossRef]

Arnold, D. P.

D. P. Arnold and N. G. Wang, “Permanent Magnets for MEMS,” J. Microelectromech. Syst. 18(6), 1255–1266 (2009).
[CrossRef]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

Atwater, H. A.

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Aydin, K.

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
[CrossRef]

Bettiol, A. A.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Bingham, C. M.

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Bosserhoff, A.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Boyd, E. M.

Brand, O.

W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998).
[CrossRef]

Brener, I.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Brucherseifer, M.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Büttner, R.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Cai, B. C.

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

Cao, C. H.

Chan, W. L.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

Chen, H. T.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, J. A.

Chen, P.

G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
[CrossRef]

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Dicken, M. J.

Ding, G. F.

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Ekmekci, E.

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Engelbrecht, S.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fu, S.

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Gu, J.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Guan, S.

S. Guan and B. J. Nelson, “Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators,” J. Magn. Magn. Mater. 292, 49–58 (2005).
[CrossRef]

Han, J.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Han, J. G.

He, G. H.

G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
[CrossRef]

He, J. A.

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

Huang, C. P.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

Huang, W. X.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009).
[CrossRef]

Jin, B. B.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kang, L.

Koch, M.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009).
[CrossRef]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

Kurz, H.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Li, Y. W.

C. Liu and Y. W. Li, “Micromachined magnetic actuators using electroplated permalloy,” IEEE Trans. Magn. 35(3), 1976–1985 (1999).
[CrossRef]

Liu, C.

C. Liu and Y. W. Li, “Micromachined magnetic actuators using electroplated permalloy,” IEEE Trans. Magn. 35(3), 1976–1985 (1999).
[CrossRef]

Liu, H. B.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Liu, J. S.

Liu, X.

Lu, Z.

Ma, J.

MacColl, R.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Mannella, C. A.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Menikh, A.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Miao, T. F.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

Mickan, S. P.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Mittleman, D. M.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Munch, J.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Nagel, M.

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Nelson, B. J.

S. Guan and B. J. Nelson, “Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators,” J. Magn. Magn. Mater. 292, 49–58 (2005).
[CrossRef]

O’Hara, J. F.

O'Hara, J. F.

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pimenov, A.

Poo, Y.

G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
[CrossRef]

Prather, D. W.

Pryce, I. M.

Schuetz, C. A.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shi, S.

Shrekenhamer, D. B.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

Singh, R.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Smirnova, E.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sweatlock, L. A.

Tao, H.

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

Taylor, A. J.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Taylor, W. P.

W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998).
[CrossRef]

Topalli, K.

Turhan-Sayan, G.

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Walavalkar, S.

Wang, H.

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

Wang, N. G.

D. P. Arnold and N. G. Wang, “Permanent Magnets for MEMS,” J. Microelectromech. Syst. 18(6), 1255–1266 (2009).
[CrossRef]

Wang, Q. J.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

Wu, J. B.

Wu, P. H.

Wu, R. X.

G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
[CrossRef]

Xu, Q. Y.

Xu, W. W.

Yao, J. Q.

Yin, X. G.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

Yuan, Y. H.

Zhang, C. H.

Zhang, W.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Zhang, W. L.

Zhang, X.

Zhang, X. C.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Zhang, Y. H.

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

Zhu, Y. Y.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010).
[CrossRef]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009).
[CrossRef]

M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008).
[CrossRef]

IEEE Photon. J.

W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

IEEE T. Magn.

Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006).
[CrossRef]

IEEE Trans. Magn.

C. Liu and Y. W. Li, “Micromachined magnetic actuators using electroplated permalloy,” IEEE Trans. Magn. 35(3), 1976–1985 (1999).
[CrossRef]

J. Appl. Phys.

G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010).
[CrossRef]

J. Magn. Magn. Mater.

S. Guan and B. J. Nelson, “Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators,” J. Magn. Magn. Mater. 292, 49–58 (2005).
[CrossRef]

J. Microelectromech. Syst.

D. P. Arnold and N. G. Wang, “Permanent Magnets for MEMS,” J. Microelectromech. Syst. 18(6), 1255–1266 (2009).
[CrossRef]

W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998).
[CrossRef]

Nat. Photonics

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Nature

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Express 13(6), 2007–2012 (2005).
[CrossRef] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. A. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17(18), 16046–16058 (2009).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002).
[CrossRef] [PubMed]

Phys. Rev. B

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Science

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other

N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley Interscience, 2006).

G.T.A. Kovacs, Micromachined Transducers Sourcebook (McGraw-Hill 1998).

Computer Simulation Technology, http://www.cst.com

F.P. Beer, E.R. Johnston Jr., J.T. DeWolf, D. Mazurek, Mechanics of Materials (McGraw-Hill 2009).

W. N. Sharpe, “Mechanical properties of MEMS materials,” in Proceedings of IEEE Semiconductor Device Research Symposium (IEEE 2001), pp. 416–417.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1a
Fig. 1a

Structure and transfer characteristics of a classical eSRR. For the device simulated the sides are 120 μm, the arms are 10 μm, and the gap is 2 μm.

Fig. 1b
Fig. 1b

The structure and the transfer characteristics of an eSRR modified to incorporate a parallel plate capacitor. For the device simulated the sides are 120 μm, the arms are 10 μm, the height of the top plate from the bottom plate is 3 μm, and the bottom plate is 60x4 μm square.

Fig. 1c
Fig. 1c

The structure and the transfer characteristics of an eSRR modified to incorporate a parallel plate capacitor with a flexing cantilever. For the device simulated the sides are 120 μm, the arms are 10 μm, the height of the top plate from the bottom plate is 3 μm, and the bottom plate is 60x4 μm square.

Fig. 1d
Fig. 1d

The structure and the transfer characteristics of an eSRR modified to incorporate a parallel plate capacitor on the top arm of the structure. For the device simulated the sides are 120 μm, the arms are 10 μm, the height of the top plate from the bottom plate is 3 μm, and the bottom plate is 60x4 μm square.

Fig. 2
Fig. 2

The structure of the magnetically actuated eSRR with a flexing parallel plate capacitor. The relevant dimensions are labeled and are given in Table 2 for the three devices studied.

Fig. 3
Fig. 3

Tuning characteristics of the three devices whose parameters are given in Table 2. a) Device 1, b) Device 2, c) Device 3.

Fig. 4
Fig. 4

Change of resonant frequency as a function of beam height for the simulated devices.

Tables (2)

Tables Icon

Table 1 Mechanical properties of the cantilever materials

Tables Icon

Table 2 Dimensions, calculated beam stress and actuating field magnitude of the MEMS-SSR designs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F 1 = M s W T H 1 F 2 = M s W T H 2
T t = F 1 | L
1 R = T t E I θ = l R
y m = R ( 1 cos ( θ ) ) + L sin ( θ )
y m = θ 2 R 2 + θ L = l 2 2 R + l L R
y m = ( S L ) 2 2 R + ( S L ) L R
L = S 3

Metrics