Abstract

We use an interferometric time-resolved observation of a femtosecond-laser pulse (800nm/45fs) interaction with glass from 100 fs to 10 ns at spatial lateral resolution down to the wavelength of the pulse. The phase and amplitude images reveal sequence of events after the irradiation of a single ultra-short laser pulse at close-to-threshold intensity when permanent refractive index changes occur. The proposed method is applicable to characterization of the processes induced by tightly focused fs-laser pulses during three-dimensional structuring of glasses and crystals for fundamental studies and optical applications. Generation of carriers, thermal expansion, generation and propagation of shockwaves, and formation of refractive index changes are experimentally observed and resolved in time and space with the highest resolution. Quantitative estimations of the threshold energies of different processes are achieved. The threshold energy of carrier generation is found the same as that of shockwave generation while the threshold energy of refractive index changes was by 40% higher. Application potential of the method is discussed.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett. 10(2), 46–48 (1967).
    [CrossRef]
  2. D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976).
    [CrossRef]
  3. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [CrossRef]
  4. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [PubMed]
  5. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000).
    [CrossRef]
  6. X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
    [CrossRef]
  7. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
    [CrossRef]
  8. R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
    [CrossRef]
  9. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
    [CrossRef]
  10. A. Gopal, S. Minardi, and M. Tatarakis, “Quantitative two-dimensional shadowgraphic method for high-sensitivity density measurement of under-critical laser plasmas,” Opt. Lett. 32(10), 1238–1240 (2007).
    [CrossRef] [PubMed]
  11. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005).
    [CrossRef] [PubMed]
  12. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “ “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23(9), 1954–1964 (2006).
    [CrossRef]
  13. A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys. 48(9), 09LD04 (2009).
    [CrossRef]
  14. Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
    [CrossRef]
  15. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
    [CrossRef] [PubMed]
  16. X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006).
    [CrossRef] [PubMed]
  17. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
    [CrossRef] [PubMed]
  18. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008).
    [CrossRef] [PubMed]
  19. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [CrossRef]
  20. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
    [CrossRef]
  21. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
    [CrossRef]
  22. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441 (2004).
    [CrossRef]
  23. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  24. K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
    [CrossRef]
  25. A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, “Three-dimensional optical memory using a human fingernail,” Opt. Express 13(12), 4560–4567 (2005).
    [CrossRef] [PubMed]
  26. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  27. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  28. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
    [CrossRef] [PubMed]
  29. H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
    [CrossRef]
  30. T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
    [CrossRef]
  31. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based tomography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  32. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
    [CrossRef] [PubMed]
  33. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” N. J. Phys. 9(8), 253 (2007).
    [CrossRef]
  34. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [CrossRef]
  35. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express 18(8), 8300–8310 (2010).
    [CrossRef] [PubMed]
  36. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
    [CrossRef]
  37. A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
    [CrossRef]
  38. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
    [CrossRef]
  39. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
    [CrossRef]

2010 (3)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express 18(8), 8300–8310 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys. 48(9), 09LD04 (2009).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

2008 (4)

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
[CrossRef] [PubMed]

S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008).
[CrossRef] [PubMed]

2007 (7)

A. Gopal, S. Minardi, and M. Tatarakis, “Quantitative two-dimensional shadowgraphic method for high-sensitivity density measurement of under-critical laser plasmas,” Opt. Lett. 32(10), 1238–1240 (2007).
[CrossRef] [PubMed]

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” N. J. Phys. 9(8), 253 (2007).
[CrossRef]

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

2006 (4)

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006).
[CrossRef] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “ “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23(9), 1954–1964 (2006).
[CrossRef]

2005 (6)

2004 (2)

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441 (2004).
[CrossRef]

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
[CrossRef] [PubMed]

2002 (2)

2000 (2)

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000).
[CrossRef]

1999 (1)

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

1996 (3)

1982 (1)

1976 (1)

D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976).
[CrossRef]

1967 (1)

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett. 10(2), 46–48 (1967).
[CrossRef]

Abraham, E.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000).
[CrossRef]

Ams, M.

Audouard, E.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Balciunas, T.

Bell, C. E.

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett. 10(2), 46–48 (1967).
[CrossRef]

Bhuyan, M. K.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Bourgeade, A.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

Breil, J.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Burakov, I. M.

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[CrossRef]

Callan, J. P.

Centurion, M.

Couairon, A.

Courvoisier, F.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Davis, K. M.

Di Trapani, P.

Dubietis, A.

Dudley, J. M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Ehrentraut, L.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Emmony, D. C.

D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976).
[CrossRef]

Fernández, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Finlay, R. J.

Furfaro, L.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Glezer, E. N.

Gong, Q.

Gopal, A.

Gregorcic, P.

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[CrossRef]

Greif, R.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Gross, T. M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

Hallo, L.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Hänsch, T. W.

Hashimoto, T.

Hayasaki, Y.

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys. 48(9), 09LD04 (2009).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, “Three-dimensional optical memory using a human fingernail,” Opt. Express 13(12), 4560–4567 (2005).
[CrossRef] [PubMed]

Her, T.-H.

Hertel, I. V.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Hiraki, Y.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hosokawa, Y.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Huang, L.

Husakou, A.

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Ina, H.

Ito, S.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Jacquot, M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Jamison, A. O.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441 (2004).
[CrossRef]

Jiang, H.

Juodkazis, S.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express 18(8), 8300–8310 (2010).
[CrossRef] [PubMed]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” N. J. Phys. 9(8), 253 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

Kaji, T.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Kim, A. M.-T.

Kneubühl, F. K.

D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976).
[CrossRef]

Kobayashi, S.

Kuroiwa, Y.

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Landt, J. A.

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett. 10(2), 46–48 (1967).
[CrossRef]

Liu, Y.

Liu, Z.

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
[CrossRef] [PubMed]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[CrossRef]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Mao, S. S.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

Mao, X.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Marshall, G. D.

Masuhara, H.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Matsumoto, H.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000).
[CrossRef]

Matsuo, S.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

Mazur, E.

Melninkaitis, A.

Mermillod-Blondin, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Meshcheryakov, Yu. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Mezel, C.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

Milosavljevic, M.

Minardi, S.

Minoshima, K.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000).
[CrossRef]

Misawa, H.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” N. J. Phys. 9(8), 253 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, “Three-dimensional optical memory using a human fingernail,” Opt. Express 13(12), 4560–4567 (2005).
[CrossRef] [PubMed]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Miyasaka, H.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Morikawa, J.

Mu, G.

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Narita, Y.

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Nishida, N.

A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, “Three-dimensional optical memory using a human fingernail,” Opt. Express 13(12), 4560–4567 (2005).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Nishimura, N.

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Orie, A.

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[CrossRef]

Petkovšek, R.

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[CrossRef]

Piskarskas, R.

Psaltis, D.

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
[CrossRef] [PubMed]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[CrossRef]

Pu, Y.

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Ruiz de la Cruz, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Russo, E.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441 (2004).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

Shukunami, C.

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Siegrist, M.

D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976).
[CrossRef]

Sirutkaitis, V.

Sokolowski-Tinten, K.

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

Spence, D. J.

Steckman, G. J.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[CrossRef]

Stoian, R.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Sun, H.-B.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

Sun, Q.

Takeda, M.

Takeshima, N.

Takita, A.

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys. 48(9), 09LD04 (2009).
[CrossRef]

A. Takita, H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, “Three-dimensional optical memory using a human fingernail,” Opt. Express 13(12), 4560–4567 (2005).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

Tamosauskas, G.

Tamošauskas, G.

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[CrossRef] [PubMed]

Tatarakis, M.

Temnov, V. V.

Tikhonchuk, V. T.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Tomozawa, M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

Vogel, A.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[CrossRef]

von der Linde, D.

Wang, X.

Watanabe, M.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

Wen, A.-B.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

Withford, M. J.

Wu, Z.

Yamamoto, H.

Yamasaki, K.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

Yang, H.

Zeng, X.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Zhai, H.

Zhou, P.

Appl. Phys. Lett. (13)

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett. 10(2), 46–48 (1967).
[CrossRef]

D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett. 29(9), 547–549 (1976).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91(8), 082902 (2007).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441 (2004).
[CrossRef]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two photon reading of three dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, and Y. Hiraki, “Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force,” Appl. Phys. Lett. 91(2), 023904 (2007).
[CrossRef]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation on silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[CrossRef]

J. Appl. Phys. (2)

R. Petkovšek and P. Gregorčič, “A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography,” J. Appl. Phys. 102(4), 044909 (2007).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[CrossRef]

J. Non-Cryst. Solids (1)

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys. 48(9), 09LD04 (2009).
[CrossRef]

N. J. Phys. (1)

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glasses,” N. J. Phys. 9(8), 253 (2007).
[CrossRef]

Opt. Commun. (1)

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun. 176(4-6), 441–452 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (9)

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
[CrossRef] [PubMed]

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005).
[CrossRef] [PubMed]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[CrossRef] [PubMed]

X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

A. Gopal, S. Minardi, and M. Tatarakis, “Quantitative two-dimensional shadowgraphic method for high-sensitivity density measurement of under-critical laser plasmas,” Opt. Lett. 32(10), 1238–1240 (2007).
[CrossRef] [PubMed]

T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
[CrossRef] [PubMed]

S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33(1), 86–88 (2008).
[CrossRef] [PubMed]

Phys. Rev. B (2)

A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008).
[CrossRef]

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MPG (2448 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics