Abstract

We report a novel chaos semiconductor laser chip in which a distributed feedback (DFB) laser, two semiconductor optical amplifiers (SOAs) and a photodiode (PD) are monolithically integrated with a passive ring waveguide. The ring-type structure with the two separate SOAs achieves stronger delayed optical feedback compared to previous chaos laser chips which use linear waveguide and facet-reflection. The integrated PD allows efficient detection of the optical signal with low optical loss. A rich variety of dynamical behaviors and optical signals can be selectively generated via injection currents to the two separate SOAs. In particular, the strong optical feedback makes possible the generation of strong broadband optical chaos, with very flat spectrum of ±6.5 dB up to 10 GHz. The stability and quality of the chaotic mode is demonstrated using strict statistical tests of randomness applied to long binary sequences extracted by sampling the optical intensity signal.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Otsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, 2006).
  2. D. M. Kane and K. A. Shore, eds. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, (Wiley, 2005).
    [CrossRef]
  3. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
    [CrossRef] [PubMed]
  4. C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996).
    [CrossRef]
  5. I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A 62(1), 011801(R) (2000).
    [CrossRef]
  6. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [CrossRef]
  7. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
    [CrossRef]
  8. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
    [CrossRef] [PubMed]
  9. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
    [CrossRef] [PubMed]
  10. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
    [CrossRef]
  11. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
    [CrossRef] [PubMed]
  12. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
    [CrossRef] [PubMed]
  13. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
    [CrossRef] [PubMed]
  14. M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
    [CrossRef]
  15. T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
    [CrossRef]
  16. M. Peil, I. Fischer, and W. Elsäszer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73(13), 023805 (2006).
    [CrossRef]
  17. D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
    [CrossRef]
  18. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo,“A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800-22 Revision 1a, (2010). http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
  19. G. Marsaglia, DIEHARD: A battery of tests of randomness, (1996). http://stat.fsu.edu/geo

2010 (4)

2009 (4)

M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
[CrossRef] [PubMed]

2008 (2)

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

2006 (1)

M. Peil, I. Fischer, and W. Elsäszer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73(13), 023805 (2006).
[CrossRef]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

2003 (1)

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

2000 (1)

I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A 62(1), 011801(R) (2000).
[CrossRef]

1996 (1)

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996).
[CrossRef]

Aida, H.

Amano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Argyris, A.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[CrossRef] [PubMed]

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
[CrossRef] [PubMed]

Bogris, A.

Chlouverakis, K. E.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[CrossRef] [PubMed]

Choi, M.

M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
[CrossRef]

Citrin, David S.

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996).
[CrossRef]

Davis, P.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A 62(1), 011801(R) (2000).
[CrossRef]

Deligiannidis, S.

Elsässer, W.

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

Elsäszer, W.

M. Peil, I. Fischer, and W. Elsäszer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73(13), 023805 (2006).
[CrossRef]

Fischer, I.

M. Peil, I. Fischer, and W. Elsäszer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73(13), 023805 (2006).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A 62(1), 011801(R) (2000).
[CrossRef]

Garcia-Fernandez, P.

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996).
[CrossRef]

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Gavrielides, A.

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

Green, K.

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

Grivas, E.

Hamacher, M.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[CrossRef] [PubMed]

Harayama, T.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
[CrossRef]

Heil, T.

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

Hirano, K.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Inoue, M.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
[CrossRef] [PubMed]

Karashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Krauskopf, B.

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Liu, Y.

I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A 62(1), 011801(R) (2000).
[CrossRef]

Locquet, A.

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996).
[CrossRef]

Morikatsu, S.

Naito, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Okumura, H.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Ortin, S.

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

Otsubo, J.

J. Otsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, 2006).

Peil, M.

M. Peil, I. Fischer, and W. Elsäszer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73(13), 023805 (2006).
[CrossRef]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Pikasis, E.

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
[CrossRef] [PubMed]

Rontani, D.

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
[CrossRef] [PubMed]

Schiamanna, M.

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Sunada, S.

M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
[CrossRef]

Syvridis, D.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[CrossRef] [PubMed]

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Tanaka, T.

M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
[CrossRef]

Uchida, A.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yamazaki, T.

Yoshimori, S.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. Choi, T. Tanaka, S. Sunada, and T. Harayama, “Linewidth properties of active-passive coupled monolithic InGaAs semiconductor ring lasers,” Appl. Phys. Lett. 94(23), 231110 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Rontani, A. Locquet, M. Schiamanna, David S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996).
[CrossRef]

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Karashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61, (2010).
[CrossRef]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(17), 343–346 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. A (2)

I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys. Rev. A 62(1), 011801(R) (2000).
[CrossRef]

M. Peil, I. Fischer, and W. Elsäszer, “Spectral broadband dynamics of semiconductor lasers with resonant short cavities,” Phys. Rev. A 73(13), 023805 (2006).
[CrossRef]

Phys. Rev. E (1)

T. Heil, I. Fischer, W. Elsässer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E 67(6), 066214 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos application in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[CrossRef] [PubMed]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102, (2009).
[CrossRef] [PubMed]

Other (4)

J. Otsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, 2006).

D. M. Kane and K. A. Shore, eds. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, (Wiley, 2005).
[CrossRef]

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo,“A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800-22 Revision 1a, (2010). http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

G. Marsaglia, DIEHARD: A battery of tests of randomness, (1996). http://stat.fsu.edu/geo

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Device structures. (a)A schematic and (b)a photograph of the chaos laser chip.

Fig. 2
Fig. 2

The layer structures of the cross section in (a)the active region (DFB, SOAs, PD), and (b)the passive region. The grating is fabricated only for DFB part. MQW, multi-quantum well; W, ridge width; H, ridge height.

Fig. 3
Fig. 3

L-I characteristics for ridge height 1.8 μm (the red curve) and 1.7μm (the blue curve). The threshold current Jth is estimated to be 13mA.

Fig. 4
Fig. 4

Schematic of a test device used for the gain measurement. DFB, SOA, and two PDs (PD1 and PD2) are monolithically integrated with a passive waveguide (Passive WG), and the width of the waveguide is the same as that of the chaos laser chip.

Fig. 5
Fig. 5

Biasing current dependences of the gain for 200μm-long SOA (a) and 100μm-long SOA (b). DFB current is fixed at 22mA (about 1.7times of the threshold current).

Fig. 6
Fig. 6

Optical feedback power ratios vs. the injection currents to SOA1. The injection currents to SOA2 were fixed to 0 mA(blue curve), 3 mA(green curve), and 6 mA(red curve).

Fig. 7
Fig. 7

Experimental setup for measuring chaotic waveforms.

Fig. 8
Fig. 8

The waveforms of the PD signals for JSOA1= (a)6 mA, (b)7 mA, (c)8 mA, (d)9 mA, (e)12 mA, (f)15 mA.

Fig. 9
Fig. 9

The radio-frequency spectra for JSOA1= (a)6 mA, (b)7 mA, (c)8 mA, (d)9 mA, (e)12 mA, (f)15 mA.

Fig. 10
Fig. 10

(a) Autocorrelation of the chaotic signals obtained for JDFB = 22 mA, JSOA1 = 15 mA, and JSOA2 = 6 mA. (b) Enlargement of the short-time autocorrelation.

Fig. 11
Fig. 11

Schematic diagram for random bit generation.

Tables (2)

Tables Icon

Table 1 Results of NIST Special Publication 800-22(rev. 1a) statistical tests. The tests have been performed using 1000 samples of 1 Mbit data and significance level α = 0.01. For the tests which produce multiple P-values and proportions, the worst case is shown

Tables Icon

Table 2 Typical results of “Diehard” statistical test suite. KS - Kolmogorov-Smirnov test. Significance level “α = 0.01”. For tests with multiple p-value, the worst case is shown

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G = 1 T ap 2 P out P in .
P f = G 1 G 2 T ap 6 exp ( α p L p α pd L pd ) ,

Metrics