Abstract

We used ultrafast laser inscription to fabricate three-dimensional integrated optical transitions that efficiently couple light from a multimode waveguide to a two-dimensional array of single mode waveguides and back. Although the entire device has an average insertion loss of 5.7 dB at 1539 nm, only ≈0.7 dB is due to mode coupling losses. Based on an analysis which is presented in the paper, we expect that our device should convert a multimode input into an array of single modes with a loss of ≈2.0 dB, assuming the input coupling losses are zero. Such devices have applications in astrophotonics and remote sensing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
    [CrossRef] [PubMed]
  2. P. Kern, E. Le Coärer, and P. Benech, “On-chip spectro-detection for fully integrated coherent beam combiners,” Opt. Express 17(3), 1976–1987 (2009).
    [CrossRef] [PubMed]
  3. J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
    [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
    [CrossRef] [PubMed]
  5. D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
    [CrossRef] [PubMed]
  6. D. Noordegraaf, P. M. W. Skovgaard, M. D. Maack, J. Bland-Hawthorn, R. Haynes, and J. Laegsgaard, “Multi-mode to single-mode conversion in a 61 port Photonic Lantern,” Opt. Express 18(5), 4673–4678 (2010).
    [CrossRef] [PubMed]
  7. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
    [CrossRef] [PubMed]
  8. T. A. Birks, A. Diez, J. L. Cruz, S. G. Leon-Saval, and D. F. Murphy, “Fibers are looking up: optical fiber transition structures in astrophotonics,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FTuU1. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-FTuU1 .
  9. R. R. Thomson, G. Brown, A. K. Kar, T. A. Birks, and J. Bland-Hawthorn, “An integrated fan-out device for astrophotonics,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPA3. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-PDPA3 .
  10. N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, “Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy,” Opt. Express 17(21), 18643–18650 (2009).
    [CrossRef]
  11. E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
    [CrossRef]
  12. B. Martin, A. Morand, P. Benech, G. Grosa, P. Kern, L. Jocou, and E. Le Coarer, “Realization of the compact static Fourier transform spectrometer LLIFTS in glass integrated optics,” Opt. Lett. 34(15), 2291–2293 (2009).
    [CrossRef] [PubMed]
  13. J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
    [CrossRef]
  14. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009).
    [CrossRef] [PubMed]
  15. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  16. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
    [CrossRef] [PubMed]
  17. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett. 29(5), 468–470 (2004).
    [CrossRef] [PubMed]
  18. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
    [CrossRef] [PubMed]
  19. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006).
    [CrossRef] [PubMed]
  20. A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
    [CrossRef]
  21. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
    [CrossRef] [PubMed]

2010 (3)

2009 (7)

2007 (2)

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[CrossRef] [PubMed]

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (3)

1996 (1)

Allington-Smith, J.

Ams, M.

Argyros, A.

Audouard, E.

Bado, P.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Barton, J. S.

Bellouard, Y.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Benech, P.

Betters, C.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Birks, T.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Birks, T. A.

Blaize, S.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Bland-Hawthorn, J.

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[CrossRef] [PubMed]

D. Noordegraaf, P. M. W. Skovgaard, M. D. Maack, J. Bland-Hawthorn, R. Haynes, and J. Laegsgaard, “Multi-mode to single-mode conversion in a 61 port Photonic Lantern,” Opt. Express 18(5), 4673–4678 (2010).
[CrossRef] [PubMed]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, “Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy,” Opt. Express 17(21), 18643–18650 (2009).
[CrossRef]

D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
[CrossRef] [PubMed]

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
[CrossRef] [PubMed]

J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
[CrossRef] [PubMed]

Bookey, H. T.

Burghoff, J.

Campbell, S.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[CrossRef] [PubMed]

Cheng, G.

Cvetojevic, N.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, “Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy,” Opt. Express 17(21), 18643–18650 (2009).
[CrossRef]

Davis, K. M.

Dugan, M.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Edvell, G.

Ellis, S. C.

Englund, M.

Fedeli, J. M.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Fender, A.

Grosa, G.

Haynes, R.

Hertel, I. V.

Hibino, Y.

Hirao, K.

Horton, A.

Huot, N.

Jocou, L.

Jovanovic, N.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Kar, A. K.

Kern, P.

Kohtoku, M.

Laegsgaard, J.

Lawrence, J.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Lawrence, J. S.

Le Coarer, E.

B. Martin, A. Morand, P. Benech, G. Grosa, P. Kern, L. Jocou, and E. Le Coarer, “Realization of the compact static Fourier transform spectrometer LLIFTS in glass integrated optics,” Opt. Lett. 34(15), 2291–2293 (2009).
[CrossRef] [PubMed]

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Le Coärer, E.

Leblond, G.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Lederer, F.

Leon-Saval, S.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Leon-Saval, S. G.

Lérondel, G.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Maack, M. D.

Mabesa, J.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Macpherson, W. N.

Marshall, G. D.

Martin, B.

Mauclair, C.

Miura, K.

Morand, A.

B. Martin, A. Morand, P. Benech, G. Grosa, P. Kern, L. Jocou, and E. Le Coarer, “Realization of the compact static Fourier transform spectrometer LLIFTS in glass integrated optics,” Opt. Lett. 34(15), 2291–2293 (2009).
[CrossRef] [PubMed]

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Nasu, Y.

Nielsen, M. D.

Nolte, S.

Noordegraaf, D.

Pertsch, T.

Peschel, U.

Pope, B.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Psaila, N. D.

Reid, D. T.

Robertson, G.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

Rosenfeld, A.

Royer, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Said, A. A.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Scott, A.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Skovgaard, P. M. W.

Stefanon, I.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Stoian, R.

Sugimoto, N.

Thomson, R. R.

Tünnermann, A.

Will, M.

Withford, M. J.

Nat. Photonics (1)

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[CrossRef]

Opt. Express (11)

R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009).
[CrossRef] [PubMed]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006).
[CrossRef] [PubMed]

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[CrossRef] [PubMed]

P. Kern, E. Le Coärer, and P. Benech, “On-chip spectro-detection for fully integrated coherent beam combiners,” Opt. Express 17(3), 1976–1987 (2009).
[CrossRef] [PubMed]

J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
[CrossRef] [PubMed]

D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
[CrossRef] [PubMed]

D. Noordegraaf, P. M. W. Skovgaard, M. D. Maack, J. Bland-Hawthorn, R. Haynes, and J. Laegsgaard, “Multi-mode to single-mode conversion in a 61 port Photonic Lantern,” Opt. Express 18(5), 4673–4678 (2010).
[CrossRef] [PubMed]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[CrossRef] [PubMed]

N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, “Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy,” Opt. Express 17(21), 18643–18650 (2009).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (2)

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[CrossRef]

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” Proc. SPIE 5339, 194–204 (2004).
[CrossRef]

Other (2)

T. A. Birks, A. Diez, J. L. Cruz, S. G. Leon-Saval, and D. F. Murphy, “Fibers are looking up: optical fiber transition structures in astrophotonics,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FTuU1. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-FTuU1 .

R. R. Thomson, G. Brown, A. K. Kar, T. A. Birks, and J. Bland-Hawthorn, “An integrated fan-out device for astrophotonics,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPA3. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-PDPA3 .

Supplementary Material (2)

» Media 1: MOV (3701 KB)     
» Media 2: MOV (3733 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketches of (a) a MM-to-SM integrated PL transition and (b) a MM-to-SM-to-MM transition created by inscribing two of the PLs shown in (a) back-to-back.

Fig. 2
Fig. 2

White light transmission micrographs of (a) the 4 × 4 SM array end of PL-1 and (b) one end of MM-1. (c) Single frame from a near field video recording (Media 1) of the SM array end of PL-1 while adjusting the injection of 1539 nm light into the MM end. (d) Single frame from a near field video recording (Media 2) of MM-1 while adjusting the injection of 1539 nm light into the opposite end. The field of view is 200 μm × 200 μm for (a) and (c), and 100 μm × 100 μm for (b) and (d). In all cases, the inscription laser entered the sample from below.

Fig. 3
Fig. 3

(a) Two-dimensional refractive index profile of one of the SM waveguides of PL-1. The laser entered from the −z direction. (b) & (c) One-dimensional index profiles along z and x respectively, taken at x = 0 and z = 0 respectively in (a).

Fig. 4
Fig. 4

(a) Two-dimensional normalised refractive index profile of MM-1 (the structure shown in Fig. 2(b)). The laser entered from the −z direction. (b) & (c) One-dimensional normalised index profiles along z and x respectively, taken at x = 0 and z = 0 respectively in (a).

Metrics