Abstract

An upconversion random laser (RL) operating in the ultraviolet is reported for Nd3+ doped fluoroindate glass powder pumped at 575 nm. The RL is obtained by the resonant excitation of the Nd3+ state 2G7/2 followed by energy transfer among two excited ions such that one ion in the pair decays to a lower energy state and the other is promoted to state 4D7/2 from where it decays emitting light at 381 nm. The RL threshold of 30 kW/cm2 was determined by monitoring the photoluminescence intensity as a function of the pump laser intensity. The RL pulses have time duration of 29 ns that is 50 times smaller than the decay time of the upconversion signal when the sample is pumped with intensities below the RL laser threshold.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
    [CrossRef]
  2. M. A. Noginov, Solid-State Random Lasers (Springer, 2005).
  3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  4. D. S. Wiersma and M. A. Noginov, “Nano and random lasers,” J. Opt. 12(2), 020201–024014 (2010).
    [CrossRef]
  5. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [CrossRef]
  6. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
    [CrossRef]
  7. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
    [CrossRef]
  8. A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
    [CrossRef]
  9. B. Li, G. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27(6), 394–396 (2002).
    [CrossRef]
  10. S. M. Redmond, G. L. Armstrong, H.-Y. Chan, E. Mattson, A. Mock, B. Li, J. R. Potts, M. Cui, S. C. Rand, S. L. Oliveira, J. Marchal, T. Hinklin, and R. M. Laine, “Electrical generation of stationary light in random scattering media,” J. Opt. Soc. Am. B 21(1), 214–222 (2004).
    [CrossRef]
  11. H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
    [CrossRef]
  12. M. A. R. C. Alencar, A. S. L. Gomes, and C. B. de Araújo, “Directional laserlike emission from a dye-doped polymer containing rutile nanoparticles,” J. Opt. Soc. Am. B 20(3), 564–567 (2003).
    [CrossRef]
  13. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [CrossRef] [PubMed]
  14. Q. Song, L. Liu, and L. Xu, “Directional random-laser emission from Bragg gratings with irregular perturbation,” Opt. Lett. 34(3), 344–346 (2009).
    [CrossRef] [PubMed]
  15. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
    [CrossRef]
  16. E. Pecoraro, S. García-Revilla, R. A. S. Ferreira, R. Balda, L. D. Carlos, and J. Fernández, “Real time random laser properties of Rhodamine-doped di-ureasil hybrids,” Opt. Express 18(7), 7470–7478 (2010).
    [CrossRef] [PubMed]
  17. C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
    [CrossRef]
  18. E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002).
    [CrossRef]
  19. L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
    [CrossRef]
  20. G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
    [CrossRef]
  21. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).

2010 (3)

D. S. Wiersma and M. A. Noginov, “Nano and random lasers,” J. Opt. 12(2), 020201–024014 (2010).
[CrossRef]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

E. Pecoraro, S. García-Revilla, R. A. S. Ferreira, R. Balda, L. D. Carlos, and J. Fernández, “Real time random laser properties of Rhodamine-doped di-ureasil hybrids,” Opt. Express 18(7), 7470–7478 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

2007 (1)

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

2004 (2)

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[CrossRef]

S. M. Redmond, G. L. Armstrong, H.-Y. Chan, E. Mattson, A. Mock, B. Li, J. R. Potts, M. Cui, S. C. Rand, S. L. Oliveira, J. Marchal, T. Hinklin, and R. M. Laine, “Electrical generation of stationary light in random scattering media,” J. Opt. Soc. Am. B 21(1), 214–222 (2004).
[CrossRef]

2003 (2)

2002 (3)

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002).
[CrossRef]

B. Li, G. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27(6), 394–396 (2002).
[CrossRef]

1999 (1)

G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
[CrossRef]

1998 (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

1997 (1)

L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Aegerter, M. A.

L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
[CrossRef]

Alencar, M. A. R. C.

Armstrong, G. L.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Balda, R.

Brito-Silva, A. M.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Cao, H.

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Carlos, L. D.

Chan, H.-Y.

Chang, R. P. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Cui, M.

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

de Araújo, C. B.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

M. A. R. C. Alencar, A. S. L. Gomes, and C. B. de Araújo, “Directional laserlike emission from a dye-doped polymer containing rutile nanoparticles,” J. Opt. Soc. Am. B 20(3), 564–567 (2003).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002).
[CrossRef]

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
[CrossRef]

L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
[CrossRef]

de Matos, C. J. S.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

de S Menezes, L.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

de S. Menezes, L.

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
[CrossRef]

Falcão-Filho, E. L.

E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002).
[CrossRef]

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

Fernández, J.

Ferreira, R. A. S.

Fujita, K.

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[CrossRef]

Fujiwara, H.

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[CrossRef]

Gagné, M.

Galembeck, A.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

García-Revilla, S.

Gomes, A. S. L.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

M. A. R. C. Alencar, A. S. L. Gomes, and C. B. de Araújo, “Directional laserlike emission from a dye-doped polymer containing rutile nanoparticles,” J. Opt. Soc. Am. B 20(3), 564–567 (2003).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Hinklin, T.

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Jerez, V. A.

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

Jesus-Silva, A. J.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

Kashyap, R.

Laine, R. M.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Li, B.

Liu, L.

Maciel, G. S.

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
[CrossRef]

Marchal, J.

Martinez Gámez, M. A.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Mattson, E.

Menezes, L. de S.

L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
[CrossRef]

Meng, X.

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[CrossRef]

Messaddeq, Y.

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002).
[CrossRef]

G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
[CrossRef]

L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
[CrossRef]

Mock, A.

Murai, S.

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[CrossRef]

Noginov, M. A.

D. S. Wiersma and M. A. Noginov, “Nano and random lasers,” J. Opt. 12(2), 020201–024014 (2010).
[CrossRef]

Oliveira, S. L.

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Pecoraro, E.

Potts, J. R.

Rakov, N.

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

Rand, S. C.

Redmond, S. M.

Sasaki, K.

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Song, Q.

Tanaka, K.

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma and M. A. Noginov, “Nano and random lasers,” J. Opt. 12(2), 020201–024014 (2010).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Williams, G.

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Xu, L.

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator forward by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

C. R. Chim. (1)

C. B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A. Jerez, and Y. Messaddeq, “Frequency upconversion in rare-earth doped fluoroindate glasses,” C. R. Chim. 5(12), 885–898 (2002).
[CrossRef]

J. Appl. Phys. (3)

E. L. Falcão-Filho, C. B. de Araújo, and Y. Messaddeq, “Frequency upconversion involving triads and quartets of íons in a Pr3+ / Nd3+ codoped fluoroindate glass,” J. Appl. Phys. 92(6), 3065–3070 (2002).
[CrossRef]

G. S. Maciel, L. de S. Menezes, C. B. de Araújo, and Y. Messaddeq, “Violet and blue light amplification in Nd3+ doped fluoroindate glasses,” J. Appl. Phys. 85, 6782–6785 (1999).
[CrossRef]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108(3), 033508 (2010).
[CrossRef]

J. Non-Cryst. Solids (1)

L. de S. Menezes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Nd3+ doped fluoroindate glass,” J. Non-Cryst. Solids 213–214, 256–260 (1997).
[CrossRef]

J. Opt. (1)

D. S. Wiersma and M. A. Noginov, “Nano and random lasers,” J. Opt. 12(2), 020201–024014 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Waves Random Media (1)

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[CrossRef]

Other (2)

M. A. Noginov, Solid-State Random Lasers (Springer, 2005).

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum of fluoroindate glass doped with Nd3+ ions. Sample length: 1.8 mm.

Fig. 2
Fig. 2

Luminescence spectra in the wavelength range of interest. Excitation wavelength: 575 nm.

Fig. 3
Fig. 3

(a) Intensity at 381 nm versus the input intensity at 575 nm (sample with x = 3.0). (b) Temporal evolution of the UC signal. Laser intensity: 50 kW/cm2. (c) UC spectra for pumping at 575 nm (red line) and 532 nm (green line).

Fig. 4
Fig. 4

(a) Simplified energy level scheme of Nd3+ ions with indication of the radiative transitions (solid lines) and the relevant energy transfer process (dashed lines). (b) Pair states involved in the UC process.

Fig. 5
Fig. 5

(a) Temporal behavior of the 318 nm signal for the sample with x = 3.0. Laser intensity: 50 kW/cm2. The solid blue line represents a fitting of f ( t ) with the parameters indicated in the text. (b) Temporal behavior of the RL signal (pump intensity: 50 kW/cm2). The inset shows the signal behavior for pump intensity of 20 kW/cm2. (c) RL intensity as a function of the laser intensity. Sample: x = 3.0.

Tables (1)

Tables Icon

Table 1 Decay and Rise Times of the 381 nm Signal for Pump Intensities Smaller Than 20 kW/cm2, Obtained Through Fittings of the Function f ( t ) | e t / t 1 e t / t 2 |

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N 2 ( t ) d t = ( Γ 2 + W t ) N 2 ( t ) ,
d N 3 ( t ) d t = W t N 2 ( t ) Γ 3 N 3 ( t ) ,
N 3 ( t ) = W t N 2 ( t ) Γ 3 ( Γ 2 + W t ) [ e ( Γ 2 + W t ) t e Γ 3 t ] .

Metrics