Abstract

We report a micropolarizer array technology exploiting “guest-host” interactions in liquid crystals for visible imaging polarimetry. We demonstrate high resolution thin micropolarizer arrays with a 5 μm × 5 μm pixel pitch and a thickness of 0.95 μm. With the “host” nematic liquid crystal molecules photo-aligned by sulfonic azo-dye SD1, we report averaged major principal transmittance, polarization efficiency and order parameter of 80.3%, 0.863 and 0.848, respectively across the 400 nm – 700 nm visible spectrum range. The proposed fabrication technology completely removes the need for any selective etching during the fabrication/integration process of the micropolarizer array. Fully CMOS compatible, it is simple and cost-effective, requiring only spin-coating followed by a single ultraviolet-exposure through a “photoalignment master”. This makes it well suited to low cost polarization imaging applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
    [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  3. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000).
    [CrossRef]
  4. V. Gruev, A. Ortu, N. Lazarus, J. Van de Spiegel, and N. Engheta, “Fabrication of a Dual-Tier Thin Film Micro Polarization Array,” Opt. Express 15, 4994–5007 (2007).
    [CrossRef] [PubMed]
  5. V. Gruev, J. Van de Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010).
    [CrossRef] [PubMed]
  6. M. Momeni and A. H. Titus, ““An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
    [CrossRef]
  7. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
    [CrossRef] [PubMed]
  8. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [CrossRef] [PubMed]
  9. X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photo-aligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009).
    [CrossRef] [PubMed]
  10. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
    [CrossRef]
  11. http://www.moxtek.com/templates/moxtek/pdf/datasheets/Pix-Polarizer-Data-Sheet.pdf
  12. M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
    [CrossRef]
  13. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010).
    [CrossRef] [PubMed]
  14. D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
    [CrossRef]
  15. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
    [CrossRef]
  16. G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals: A New Electro-Optic Effect,” Appl. Phys. Lett. 13, 91–92 (1968).
    [CrossRef]
  17. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, New York, 1996).
  18. N. Kawatsuki and K. Fujio, “Cooperative Reorientation of Dichroic Dyes Dispersed in Photo-cross-linkable Polymer Liquid Crystal and Application to Linear Polarizer,” Chem. Lett. 34, 558–559 (2005).
    [CrossRef]
  19. E. Peeters, J. Lub, and A. M. Jan, “Steenbakkers, and D. J. Broer, “High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest-Host Systems,” Adv. Mater. (Deerfield Beach Fla.) 18, 2412–2417 (2006).
    [CrossRef]
  20. D. Goldstein, Polarized Light (Marcel Dekker, New York, 2003).
    [CrossRef]
  21. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009).
    [CrossRef] [PubMed]
  22. J. S. Tyo, “Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system,” J. Opt. Soc. Am. A 15, 359–366 (1998).
    [CrossRef]
  23. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009).
    [CrossRef] [PubMed]

2010 (3)

2009 (6)

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photo-aligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009).
[CrossRef] [PubMed]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009).
[CrossRef] [PubMed]

J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[CrossRef] [PubMed]

E. Peeters, J. Lub, and A. M. Jan, “Steenbakkers, and D. J. Broer, “High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest-Host Systems,” Adv. Mater. (Deerfield Beach Fla.) 18, 2412–2417 (2006).
[CrossRef]

M. Momeni and A. H. Titus, ““An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

2005 (1)

N. Kawatsuki and K. Fujio, “Cooperative Reorientation of Dichroic Dyes Dispersed in Photo-cross-linkable Polymer Liquid Crystal and Application to Linear Polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

2002 (3)

C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
[CrossRef] [PubMed]

D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
[CrossRef]

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

2000 (1)

1998 (1)

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals: A New Electro-Optic Effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Akiyama, H.

D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
[CrossRef]

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

Bermak, A.

Boussaid, F.

Brady, D.

Chenault, D. B.

Chigrinov, V. G.

Craighead, H. G.

Du, T.

Dunbar, L. A.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Eckert, R.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Engheta, N.

Fujio, K.

N. Kawatsuki and K. Fujio, “Cooperative Reorientation of Dichroic Dyes Dispersed in Photo-cross-linkable Polymer Liquid Crystal and Application to Linear Polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Goldstein, D. L.

Grenet, E.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Gruev, V.

Guillaumee, M.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Guo, J.

Harnett, C. K.

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals: A New Electro-Optic Effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Ichimura, K.

D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
[CrossRef]

Jan, A. M.

E. Peeters, J. Lub, and A. M. Jan, “Steenbakkers, and D. J. Broer, “High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest-Host Systems,” Adv. Mater. (Deerfield Beach Fla.) 18, 2412–2417 (2006).
[CrossRef]

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki and K. Fujio, “Cooperative Reorientation of Dichroic Dyes Dispersed in Photo-cross-linkable Polymer Liquid Crystal and Application to Linear Polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

LaCasse, C. F.

Lazarus, N.

Lub, J.

E. Peeters, J. Lub, and A. M. Jan, “Steenbakkers, and D. J. Broer, “High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest-Host Systems,” Adv. Mater. (Deerfield Beach Fla.) 18, 2412–2417 (2006).
[CrossRef]

Martin, O. J. F.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Matsunaga, D.

D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
[CrossRef]

Momeni, M.

M. Momeni and A. H. Titus, ““An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

Ohta, J.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Ortu, A.

Peeters, E.

E. Peeters, J. Lub, and A. M. Jan, “Steenbakkers, and D. J. Broer, “High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest-Host Systems,” Adv. Mater. (Deerfield Beach Fla.) 18, 2412–2417 (2006).
[CrossRef]

Perkins, R.

Ratliff, B. M.

Santschi, Ch.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Sasagawa, K.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Sato, S.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Shaw, J. A.

Stanley, R. P.

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Tamaki, T.

D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
[CrossRef]

Titus, A. H.

M. Momeni and A. H. Titus, ““An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

Tokuda, T.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

Tyo, J. S.

Van de Spiegel, J.

Yamada, H.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

York, T.

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals: A New Electro-Optic Effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

Zhao, X.

Adv. Mater. (Deerfield Beach Fla.) (2)

D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, “Photofabrication of Micro-Patterned Polarizing Elements for Stereoscopic Displays,” Adv. Mater. (Deerfield Beach Fla.) 14, 1477–1480 (2002).
[CrossRef]

E. Peeters, J. Lub, and A. M. Jan, “Steenbakkers, and D. J. Broer, “High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest-Host Systems,” Adv. Mater. (Deerfield Beach Fla.) 18, 2412–2417 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals: A New Electro-Optic Effect,” Appl. Phys. Lett. 13, 91–92 (1968).
[CrossRef]

M. Guillaumee, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[CrossRef]

Chem. Lett. (1)

N. Kawatsuki and K. Fujio, “Cooperative Reorientation of Dichroic Dyes Dispersed in Photo-cross-linkable Polymer Liquid Crystal and Application to Linear Polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Electron. Lett. (1)

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

IEEE Trans. Neur. Netw. (1)

M. Momeni and A. H. Titus, ““An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (2)

Other (3)

D. Goldstein, Polarized Light (Marcel Dekker, New York, 2003).
[CrossRef]

http://www.moxtek.com/templates/moxtek/pdf/datasheets/Pix-Polarizer-Data-Sheet.pdf

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photoalignment of “host” NLC molecules and “guest” dichroic dye molecules.

Fig. 2
Fig. 2

Proposed “guest-host” micropolarizer array fabrication process flow and adopted pattern.

Fig. 3
Fig. 3

Microphotographs of the fabricated “guest-host” micropolarizer array, inspected by a linear polarization analyzer along the following orientations: (A) 0 degree; (B) 90 degree; (C) 45 degree; (D) −45 degree.

Fig. 4
Fig. 4

Spectral measurement results: (A) the major and minor principal transmittances T||, T; (B) polarization efficiency PE.

Fig. 5
Fig. 5

Spectral measurement results: (A) absorbances A, A|| corresponding to the major and minor principal transmittances T||, T; (B) order parameter S.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P E = T || T T || + T × 100 %

Metrics