Abstract

We demonstrate a reversibly tunable photonic crystal quantum dot laser using a photochromic thin film. The laser is composed of a photonic crystal cavity with a bare cavity Q as high as 4500 coupled to a high density ensemble of indium arsenide quantum dots. By depositing a thin layer of photochromic material on the photonic crystal cavities, the laser can be optically tuned smoothly and reversibly over a wavelength range of 2.68 nm. Lasing is observed at temperatures as high as 80 K in the 900-1000 nm near-infrared wavelength range. The spontaneous emission coupling factor is measured to be as high as β = 0.41, indicating that the laser operates in the high-β regime.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  2. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [CrossRef]
  3. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
    [CrossRef] [PubMed]
  4. T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
    [CrossRef]
  5. T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
    [CrossRef]
  6. J. Johansen, S. Stobbe, I. S. Nikolaev, T. L. Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states,” in Quantum Electronics and Laser Science Conference, 2007. QELS'07 (2008), pp. 1–2.
  7. J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
    [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  9. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
    [CrossRef]
  10. H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Phys. Lett. 81, 2680–2682 (2002).
  11. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
    [CrossRef] [PubMed]
  12. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).
  13. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
    [CrossRef] [PubMed]
  14. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
    [CrossRef]
  15. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
    [CrossRef]
  16. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
    [CrossRef]
  17. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
    [CrossRef] [PubMed]
  18. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
    [CrossRef]
  19. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  20. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
    [CrossRef]
  21. A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
    [CrossRef]
  22. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
    [CrossRef]
  23. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
    [CrossRef]
  24. D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
    [CrossRef]
  25. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  26. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009).
    [CrossRef]
  27. R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002).
    [CrossRef]
  28. M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
    [CrossRef]
  29. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
    [CrossRef] [PubMed]
  30. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
    [CrossRef] [PubMed]
  31. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (2002).
    [CrossRef]
  32. H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
    [CrossRef]
  33. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30(1), 64–66 (2005).
    [CrossRef] [PubMed]
  34. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
    [CrossRef] [PubMed]
  35. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
    [CrossRef]
  36. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
    [CrossRef]
  37. J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
    [CrossRef] [PubMed]
  38. N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990).
    [CrossRef]
  39. R. C. Bertelson, i n: Photochromism, G.H. Brown (Ed.). Wilev-Interscience, New York p 45 (1969).
  40. K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
    [CrossRef]
  41. M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
    [CrossRef]

2010 (5)

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[CrossRef]

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

2009 (7)

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009).
[CrossRef]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[CrossRef]

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[CrossRef] [PubMed]

H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
[CrossRef]

2008 (3)

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

2007 (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

2006 (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[CrossRef] [PubMed]

2005 (5)

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30(1), 64–66 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

2002 (5)

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Phys. Lett. 81, 2680–2682 (2002).

R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (2002).
[CrossRef]

2001 (1)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

2000 (1)

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef]

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

1998 (1)

K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
[CrossRef]

1994 (1)

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

1990 (1)

N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990).
[CrossRef]

Akahane, Y.

Altug, H.

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Phys. Lett. 81, 2680–2682 (2002).

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[CrossRef] [PubMed]

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Arthen-Engeland, T.

N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990).
[CrossRef]

Asano, T.

Atlasov, K. A.

Baba, T.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Baehr-Jones, T.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Bagheri, M.

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

Benedetto, S.

R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002).
[CrossRef]

Berkovic, G.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef]

Bhattacharya, P. K.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Bjork, G.

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (2002).
[CrossRef]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Bouwmeester, D.

H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Brixner, T.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Buback, J.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Calic, M.

Chen, H.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

Choi, S. J.

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Cojocaru, C.

Dapkus, P. D.

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Deppe, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

Dick, B.

N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990).
[CrossRef]

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Dwir, B.

Eggleton, B. J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Ellis, B.

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

Ernsting, N. P.

N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990).
[CrossRef]

Faraon, A.

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Fourkas, J. T.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[CrossRef]

Fushman, I.

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

Gallo, P.

Gibbs, H. M.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Gong, Y.

Goto, T.

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

Guimard, D.

Harris, J. S.

Hendrickson, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Hochberg, M.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Hui, R.

R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002).
[CrossRef]

Hvam, J. M.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Ide, T.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

Ikemoto, Y.

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

Irie, M.

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
[CrossRef]

Ishida, S.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Ishihara, T.

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

Ishikawa, T.

K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
[CrossRef]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[CrossRef] [PubMed]

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Johansen, J.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Kapon, E.

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009).
[CrossRef]

Karlsson, K. F.

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Khitrova, G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kim, H.

H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, K.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Kobatake, S.

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

Kristensen, P. T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Krongauz, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef]

Kullmann, M.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Langhojer, F.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Letartre, X.

Levenson, A.

Lifka, T.

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

Lodahl, P.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Loncar, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Lund-Hansen, T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Luther-Davies, B.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Maune, B.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Mitsuyu, T.

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

Monnier, P.

Montrosset, I.

R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002).
[CrossRef]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Nakaoka, T.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

Nakata, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Nikolaev, I. S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Noda, S.

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Norris, T. B.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Nuernberger, P.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

O'Brien, J. D.

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

Ohkawa, K.

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009).
[CrossRef] [PubMed]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Petroff, P. M.

H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Psaltis, D.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Qiu, Y.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Raineri, F.

Raj, R.

Rakher, M. T.

H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Rudra, A.

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Sarmiento, T.

Scherer, A.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schmidt, R.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Seassal, C.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Shambat, G.

Shchekin, O.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

Shih, M. H.

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

Shindo, Y.

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

Singh, J.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Solomon, G.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[CrossRef]

Song, B. S.

Sridharan, D.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[CrossRef]

Stobbe, S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Takeshita, M.

K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
[CrossRef]

Tanabe, K.

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Tandaechanurat, A.

Tatebayashi, J.

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

Tsujimura, A.

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

Uchida, K.

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
[CrossRef]

Urayama, J.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Viktorovitch, P.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Vos, W. L.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

Vuckovic, J.

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Phys. Lett. 81, 2680–2682 (2002).

Waks, E.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[CrossRef]

Watanabe, K.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

Weiss, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef]

Witzens, J.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Wu, Z. K.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Würthner, F.

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009).
[CrossRef]

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (2002).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

Zhang, B.

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

Appl. Phys. Lett. (10)

B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007).
[CrossRef]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004).
[CrossRef]

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009).
[CrossRef]

T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004).
[CrossRef]

H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009).
[CrossRef]

Chem. Commun. (Camb.) (1)

M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999).
[CrossRef]

Chem. Rev. (1)

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000).
[CrossRef]

Electron. Lett. (2)

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002).
[CrossRef]

M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010).
[CrossRef] [PubMed]

J. Lumin. (1)

T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[CrossRef]

Nat. Photonics (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[CrossRef]

Nature (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Lett. (1)

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Phys. Lett. 81, 2680–2682 (2002).

Phys. Rev. B (2)

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001).
[CrossRef] [PubMed]

Pure Appl. Chem. (1)

N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990).
[CrossRef]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[CrossRef] [PubMed]

Tetrahedron (1)

K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998).
[CrossRef]

Other (2)

R. C. Bertelson, i n: Photochromism, G.H. Brown (Ed.). Wilev-Interscience, New York p 45 (1969).

J. Johansen, S. Stobbe, I. S. Nikolaev, T. L. Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states,” in Quantum Electronics and Laser Science Conference, 2007. QELS'07 (2008), pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Schematic showing the cross section of photonic crystal cavity laser with 3 QD layers embedded at the center of the GaAs slab. After fabrication, the photochromic thin-film is spun on the surface. b) SEM image of cavity with side holes A, B, C shifted. Scale bar: 1μm. c) Cavity emission spectrum of a typical device at 80 K recorded for increasing excitation powers using the 780 nm pump laser.

Fig. 2
Fig. 2

(a) Laser output intensity (red circles) and linewidth (green diamonds) as function of input power at 20K. The blue line represent the theoretical fit to the cavity intensity using Eq. (1). (b) Cavity resonance as a function of input power at 20K (c) Laser output intensity (red circles) and linewidth (green diamonds) as function of input power at 80K. The blue line represents the theoretical fit to the cavity intensity using Eq. (1). (d) Cavity resonance as a function of input power at 80K

Fig. 3
Fig. 3

(a) Cavity emission spectra (solid circles) recorded as a function of photochromic tuning from initial resonance using UV radiation, with Lorentzian fits (solid lines). (b) Linewidth (blue circles) and intensity (green squares) of the photochromic laser as a function of tuning from initial resonance, derived from the same scan as (a).

Fig. 4
Fig. 4

Tunability of the photonic crystal quantum dot laser at (a) 20 K and (b) 80K. Regions corresponding to UV exposure are shown by diamonds. Green exposure is shown by gray circles. The average pump intensity for UV and green are 3kW/cm2 except for the region shown by arrows where 0.5 kW/cm2 was used.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P i n = ω κ β η [ p 1 + p ( 1 + ξ ) ( 1 + β p ) ξ β p ] ,

Metrics