Abstract

The subject study demonstrates the imaging of cell activity by quantitatively assessing the motion of intracellular organelles and cell plasma membranes without any contrast agent. The low-coherent interferometric technique and phase-referenced phase shifting technique were integrated to reveal the depth-resolved distribution of intracellular motility. The transversal and vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical stability of the system was 1.2 nm. The motility of the cell was assessed by mean squared displacement (MSD) and we have compensated for the MSD by applying statistical noise analysis. Thus we show the significant change of intracellular motility after paraformaldehyde treatment in non-labeled cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
    [CrossRef] [PubMed]
  2. P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
    [CrossRef] [PubMed]
  3. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
    [CrossRef] [PubMed]
  4. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  5. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
    [CrossRef]
  6. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
    [CrossRef] [PubMed]
  7. X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Opt. Lett. 31(12), 1830–1832 (2006).
    [CrossRef] [PubMed]
  8. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  9. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [CrossRef] [PubMed]
  10. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [CrossRef]
  11. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
    [CrossRef] [PubMed]
  12. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [CrossRef] [PubMed]
  13. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
    [CrossRef]
  14. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [CrossRef] [PubMed]
  15. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004).
    [CrossRef] [PubMed]
  16. T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004).
    [CrossRef] [PubMed]
  17. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
    [CrossRef] [PubMed]
  18. K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
    [CrossRef] [PubMed]
  19. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15(13), 8115–8124 (2007).
    [CrossRef] [PubMed]
  20. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  21. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  22. J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
    [CrossRef] [PubMed]
  23. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
    [CrossRef] [PubMed]
  24. A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39(14), 2326–2331 (2000).
    [CrossRef]
  25. K. Creath, “V Phase-Measurement Interferometry Techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), pp. 349–393.
  26. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A 12(4), 761–768 (1995).
    [CrossRef]
  27. M. H. Gail and C. W. Boone, “The locomotion of mouse fibroblasts in tissue culture,” Biophys. J. 10(10), 980–993 (1970).
    [CrossRef] [PubMed]
  28. H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60(4), 910–921 (1991).
    [CrossRef] [PubMed]
  29. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
    [CrossRef] [PubMed]
  30. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
    [CrossRef]
  31. J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
    [CrossRef] [PubMed]
  32. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7(4), 537–541 (1990).
    [CrossRef]

2010 (1)

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
[CrossRef]

2008 (4)

2007 (7)

2006 (2)

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Opt. Lett. 31(12), 1830–1832 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (3)

2001 (2)

2000 (1)

1999 (1)

1995 (1)

1991 (1)

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60(4), 910–921 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
[CrossRef] [PubMed]

1970 (1)

M. H. Gail and C. W. Boone, “The locomotion of mouse fibroblasts in tissue culture,” Biophys. J. 10(10), 980–993 (1970).
[CrossRef] [PubMed]

Adler, D. C.

Akkin, T.

Badizadegan, K.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
[CrossRef]

Baker, J.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Banaszak Holl, M. M.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Beals, J.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Best, C. A.

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Best-Popescu, C. A.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Bielinska, A.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Boccara, A. C.

Boccara, C.

Boone, C. W.

M. H. Gail and C. W. Boone, “The locomotion of mouse fibroblasts in tissue culture,” Biophys. J. 10(10), 980–993 (1970).
[CrossRef] [PubMed]

Boppart, S. A.

Brophy, C. P.

Budor, A.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Bursac, N.

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
[CrossRef]

Charrière, F.

Chu, M. C.

Coffey, D. S.

A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
[CrossRef] [PubMed]

Colomb, T.

Creazzo, T. L.

Cuche, E.

Dasari, R. R.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004).
[CrossRef] [PubMed]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
[CrossRef]

Davé, D.

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Depeursinge, C.

Drexler, W.

Dubois, A.

Ellerbee, A. K.

Elson, E. L.

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60(4), 910–921 (1991).
[CrossRef] [PubMed]

Emery, Y.

Fabritius, T.

Fang-Yen, C.

Farrant, D. I.

Feld, M. S.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004).
[CrossRef] [PubMed]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
[CrossRef]

Feldman, M. D.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gail, M. H.

M. H. Gail and C. W. Boone, “The locomotion of mouse fibroblasts in tissue culture,” Biophys. J. 10(10), 980–993 (1970).
[CrossRef] [PubMed]

Goda, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Grieve, K.

Hahn, M. S.

Hessler, J. A.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Hibino, K.

Hiruma, T.

Huang, S. W.

Huber, R.

Ikeda, T.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

Ippen, E. P.

Iwai, H.

Izatt, J. A.

Jeong, K.

Kang, H. W.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Kärtner, F. X.

Keleshian, A. M.

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Kim, J.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Kühn, J.

Laposata, M.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Larkin, K. G.

Lecaque, R.

Li, X.

Li, X. D.

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Magistretti, P.

Magistretti, P. J.

Makita, S.

Manley, S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Marquet, P.

Mecke, A.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Milner, T.

Milner, T. E.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Miwa, M.

Mohler, J. L.

A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
[CrossRef] [PubMed]

Moneron, G.

Montfort, F.

Morgner, U.

Nolte, D. D.

Oh, J.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Oreb, B. F.

Orr, B. G.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Park, Y.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Partin, A. W.

A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
[CrossRef] [PubMed]

Pitris, C.

Popescu, G.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

Putchakayala, K.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Qian, H.

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60(4), 910–921 (1991).
[CrossRef] [PubMed]

Rappaz, B.

Rieger, D.

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Rylander Iii, H.

Sachs, F.

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Sanghi, P.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Satterwhite, L. L.

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
[CrossRef]

Schoeniger, J. S.

A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
[CrossRef] [PubMed]

Selb, J.

Seung, H. S.

Shaked, N. T.

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
[CrossRef]

Sheetz, M. P.

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60(4), 910–921 (1991).
[CrossRef] [PubMed]

Suresh, S.

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[CrossRef] [PubMed]

Turek, J. J.

Vabre, L.

Wax, A.

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
[CrossRef]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
[CrossRef]

Yamashita, Y.

Yamauchi, T.

Yang, C.

Yasuno, Y.

Zhang, H.

Zhang, P. C.

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Acta Biomater. (1)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater. 3(4), 413–438 (2007).
[CrossRef] [PubMed]

Am. J. Physiol. Cell Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomed Opt. Express (1)

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed Opt. Express 1(2), 706–719 (2010).
[CrossRef]

Biophys. J. (2)

M. H. Gail and C. W. Boone, “The locomotion of mouse fibroblasts in tissue culture,” Biophys. J. 10(10), 980–993 (1970).
[CrossRef] [PubMed]

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60(4), 910–921 (1991).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Langmuir (1)

J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. Baker., “Atomic force microscopy study of early morphological changes during apoptosis,” Langmuir 21(20), 9280–9286 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, “Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography,” Lasers Surg. Med. 39(3), 266–272 (2007).
[CrossRef] [PubMed]

Nature (1)

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Opt. Express (8)

T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[CrossRef] [PubMed]

T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[CrossRef] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[CrossRef] [PubMed]

A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15(13), 8115–8124 (2007).
[CrossRef] [PubMed]

Opt. Lett. (7)

X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Opt. Lett. 31(12), 1830–1832 (2006).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
[CrossRef] [PubMed]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
[CrossRef]

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. W. Partin, J. S. Schoeniger, J. L. Mohler, and D. S. Coffey, “Fourier analysis of cell motility: correlation of motility with metastatic potential,” Proc. Natl. Acad. Sci. U.S.A. 86(4), 1254–1258 (1989).
[CrossRef] [PubMed]

Other (1)

K. Creath, “V Phase-Measurement Interferometry Techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), pp. 349–393.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic illustration of the experimental Setup. (a): Whole setup, (b): Interference fringe observed on the CCD camera while moving the PZT2, (c): Detail of the sample arm. IR-LD: Infrared laser diode, PZT: Piezoelectric transducer, PD: Photo detector, ND: Neutral density filter, M: Mirror, L: Lenses, BS: Beam splitter, DM: Dichroic mirror (cutoff: 900nm).

Fig. 2
Fig. 2

Timing chart of the phase shifting and CCD exposure.

Fig. 3
Fig. 3

Phase images of the living cell under test, including (a) transmission phase image; (b) reflection phase image at the height 2.4 μm above the glass surface; and (c) typical temporal fluctuation of the phase of the reflection signal. The blue and black lines show the temporal fluctuation at the points A and B shown in Fig. 3(b), respectively. The green line shows the temporal fluctuation measured at the top of a 10 μm polystyrene bead immersed in pure water.

Fig. 4
Fig. 4

Phase fluctuation of the living MCF7 cell sample: The unit of the x axis and y axis is the micrometer. (a): Reflectance image R(x,y). The unit of color is arbitrary. (b)-(c): Distribution of the MSD: The pseudo color shows the MSD Δ φ 2 ( x , y , τ ) and the unit of the color bar is the radian2. The τ is 1.25, 3.75 and 6.25 seconds in the Figs. 4(b), 4(c) and 4(d), respectively. The unit of the x axis and y axis is μm.

Fig. 5
Fig. 5

Phase fluctuation of the MCF7 cell sample after paraformaldehyde treatment. The unit of the x axis and y axis is the micrometer. (a): Reflectance image R(x,y): The unit of the color is arbitrary. (b)-(c): Distribution of the MSD: The pseudo color shows the MSD Δ φ 2 ( x , y , τ ) and the unit of the color bar is the radian.2 The τ is 1.25, 3.75 and 6.25 seconds in the Figs. 5(b), 5(c) and 5(d), respectively. The unit of the x axis and y axis is μm.

Fig. 6
Fig. 6

MSD Δ φ 2 ( τ ) at the positions A and B in Fig. 4 and C and D in Fig. 5.

Fig. 7
Fig. 7

Timing chart of phase shift for tomographic imaging of phase fluctuation.

Fig. 8
Fig. 8

Tomographic image of phase fluctuation: The time difference τ for calculating MSD is 3.75 sec. (a): Δ φ 2 ( x , y , z = 2.4 μ m , τ = 3.75 ) , (b): Δ φ 2 ( x , y , z = 3.9 μ m , τ = 3.75 ) , (c): Δ φ 2 ( x , y , z = 5.5 μ m , τ = 3.75 ) , and (d): Δ φ 2 ( x , y , z = 7.4 μ m , τ = 3.75 ) . The unit of the x, y and z axes is μm.

Fig. 9
Fig. 9

Vertical cross section of the tomographic phase-fluctuation image. Figs. (a) and (b) are images of the living cell, and the figs. (c) and (d) are images of the paraformaldehyde-treated cell. Figs. (a) and (c) are the cross sections of the reflectance, which is calculated from the amplitude component of the interference image. Figs (b) and (d) are the cross-sectional images of the mean squared displacement of phase fluctuation Δ φ 2 where τ = 3.75 and y = 20μm. The unit of the color bar for the figs. (b) and (d) is the radian.2 The unit of the x axis and z axis is μm.

Fig. 10
Fig. 10

Noise characteristic of the CCD camera C9300-201. (a) Standard deviation σCCD of the measured CCD intensity (analog-to-digital converted value) as a function of the average intensity N CCD. (b) Example of the distribution of the intensity: Black line: measured histogram of the count on the CCD pixels. The mean value is 3261 and the standard deviation is 26.28. Green line: Gaussian curve with the mean value of 3261 and the standard deviation of 26.28. The inset shows a zoom-in of the region contained within the gray box.

Fig. 11
Fig. 11

Interference signal shown in the complex plane: (a) Schematic illustration, (b) The experimentally measured probability density function of the interference signal C on a bead surface measured for 125 seconds.

Fig. 12
Fig. 12

Raw mean squared displacement observed on a bead surface as a function of the estimated offset of the MSD. The green lines show Δ φ 2 = 2 σ φ 2 . (a) τ = 1.25, (b) τ = 12.5.

Fig. 13
Fig. 13

Compensation of the MSD on the bead surface: (a) Interference fringe, (b) MSD before compensation, (c) MSD after compensation. The unit of the color bar is the radian2.

Fig. 14
Fig. 14

The MSD of the fixed cell shown in the Fig. 5 before and after the compensation. τ = 3.75 was chosen for the demonstration; (a) the raw MSD before the compensation, (b) the estimated overestimation of MSD, (c) the MSD after the compensation performed by subtracting the image (b) from the image (a). The unit of the x and y axes is μm. The unit of the color bar which is common in these three images is the radian2.

Fig. 15
Fig. 15

The raw MSD Δ φ 2 ( τ ) before compensation as a function of τ. (a): The raw MSD of the living MCF7 cell at the positions A and B in Fig. 4. (b): The raw MSD of the fixed MCF7 cell at the positions C and D in Fig. 5. In these figures, the estimated offset of Δ φ 2 ( τ ) is also shown by dashed lines.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I δ φ = η ( | E r | 2 + | E s | 2 + 2 | E r | | E s | cos ( φ δ ϕ ) γ ( z ) ) ,
A = ( I π ( x , y ) + 2 I 0 ( x , y ) I π ( x , y ) ) / 4 , B = ( I 3 π / 2 ( x , y ) 3 I π / 2 ( x , y ) + 3 I π / 2 ( x , y ) I 3 π / 2 ( x , y ) ) / 8 .
R ( x , y ) = | C ( x , y ) | 2 | E s | 2 γ ( z ) 2 ,   φ ( x , y ) = arg ( C ( x , y ) ) .
Δ φ 2 ( τ ) = | φ ( t ) φ ( t τ ) | 2 ¯ .
σ = C C D 1.92 2 + 0.211 × N C C D .
p ( X , Y ) = 1 2 π σ R 2 exp ( X 2 + Y 2 2 σ R ) ,
σ φ = σ R | C | .
Δ φ 2 ( τ ) = ( Ν ( φ ( t ) , σ φ 2 ) Ν ( φ ( t τ ) , σ φ 2 ) ) 2       = ( Ν ( φ ( t ) φ ( t τ ) , 2 σ φ 2 ) ) 2       = | φ ( t ) φ ( t τ ) | 2 + 2 σ φ 2       = Δ φ ^ 2 ( τ ) + 2 σ φ 2 ,
Δ φ ^ 2 ( τ ) = Δ φ 2 ( τ ) 2 σ φ 2 .

Metrics