Abstract

We report on the fabrication, fluorescence and laser properties of optical waveguides by swift nitrogen ion irradiation in Nd:YAG crystals. The confocal micro-luminescence investigations have concluded that the fluorescence features of the bulk material have been well preserved in the waveguide. Under 808 nm optical end-pumping, continuous-wave (cw) laser oscillation at 1064.2 nm has been demonstrated with laser slope efficiencies of 16% and pump power thresholds of 38.3 mW.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  2. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [CrossRef]
  3. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57 (1985).
    [CrossRef]
  4. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [CrossRef]
  5. M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
    [CrossRef]
  6. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12(10), 2264–2269 (2004).
    [CrossRef] [PubMed]
  7. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
    [CrossRef] [PubMed]
  8. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
    [CrossRef] [PubMed]
  9. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
    [CrossRef] [PubMed]
  10. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [CrossRef] [PubMed]
  11. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [CrossRef]
  12. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
    [CrossRef]
  13. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [CrossRef]
  14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).
  15. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [CrossRef]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [CrossRef]
  17. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [CrossRef]
  18. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
    [CrossRef] [PubMed]
  19. J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
    [CrossRef]
  20. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [CrossRef]
  21. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
    [CrossRef] [PubMed]
  22. J. F. Ziegler, computer code, SRIM http://www.srim.org
  23. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
    [CrossRef] [PubMed]
  24. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010).
    [CrossRef]
  25. Y. Ren, N. Dong, Y. Tan, J. Guan, F. Chen, and Q. Lu, “Continuous Wave Laser Generation in Proton Implanted Nd:GGG Planar Waveguides,” J. Lightwave Technol. 28, 3578–3581 (2010).
  26. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [CrossRef]

2010 (5)

2009 (3)

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
[CrossRef] [PubMed]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

2008 (1)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

2007 (4)

2006 (1)

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

2005 (2)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
[CrossRef]

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

1992 (1)

1988 (1)

1985 (1)

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57 (1985).
[CrossRef]

Agullo-Lopez, F.

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Ams, M.

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bardyszewski, W.

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Benayas, A.

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bettiol, A. A.

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Caballero, O.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Calmano, T.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
[CrossRef]

Carrascosa, M.

Chen, F.

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Dekker, P.

Domenech, M.

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
[CrossRef]

Dong, N.

Flores-Romero, E.

Garcia, G.

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Garcia-Navarro, A.

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Guan, J.

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Jaque, D.

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Khrushchev, I.

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

Lifante, G.

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
[CrossRef]

Lu, Q.

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

Márquez, H.

Marshall, G. D.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Méndez, A.

Mitchell, J.

Myndez, A.

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

Narusawa, T.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Okhrimchuk, A. G.

Olivares, J.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Petermann, K.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Qiu, F.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Rangel-Rojo, R.

Ren, Y.

Rickards, J.

Risk, W. P.

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57 (1985).
[CrossRef]

Shestakov, A. V.

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57 (1985).
[CrossRef]

Tan, Y.

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Trejo-Luna, R.

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Vázquez, G.

Vázquez, G. V.

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
[CrossRef] [PubMed]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
[CrossRef]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Withford, M. J.

Yao, Y.

Yevick, D.

Appl. Phys. B (3)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “Continuous-wave laser action at λ=1064.3 nm in proton- and carbon- implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83(20), 4110–4112 (2003).
[CrossRef]

J. Olivares, A. Garcia-Navarro, G. Garcia, A. Myndez, and F. Agullo-Lopez, “Optical determination of three-dimensional nanotrack profiles generated by single swift-heavy ion impacts in lithium niobate,” Appl. Phys. Lett. 89(7), 071923 (2006).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

J. Appl. Phys. (3)

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57 (1985).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Other (3)

J. F. Ziegler, computer code, SRIM http://www.srim.org

E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The electronic stopping power (dashed line), nuclear stopping power (solid line) curves as well as the refractive profile of the waveguide (dotted line) as a function of the depth from the sample surface. The experimental (b) and simulated (c) near-field modal profiles (TM0) of the 20 MeV N ion irradiated Nd:YAG waveguide.

Fig. 2
Fig. 2

(a) The luminescence emission spectra of Nd3+ ions at 4F3/24I9/2 transition obtained from the waveguide (blue line) and the bulk (red line). Two emission peaks are indicated by two arrows. 1-D spatial scan of the spectral positions (b) and line-width (at FWHM) (c) of the Nd3+ emission line at around 945 nm as functions of the in-depth distance.

Fig. 3
Fig. 3

(a) Comparison of the room temperature micro-luminescence emission spectra correlated to Nd3+ ions at 4F3/24I11/2 transition obtained from the planar waveguide (red line) and the bulk (blue line). (b) 1064.2 nm laser emission spectrum from the Nd:YAG planar waveguide.

Fig. 4
Fig. 4

Output laser power as a function of absorbed pump power obtained from the Nd:YAG waveguide.(a) and (b) shows the laser curves obtained when a microscope objective and a single convex lens have been used as the coupling system. The solid lines are the linear fit of the experimental data (solid dots). The insets show the near-field light intensity distributions of the output laser beams.

Metrics