Abstract

This study investigated optically controllable biphotonic gratings (BGs) in azo-dye-doped cholesteric liquid crystals. The BGs were formed under the illumination of one green beam with the simultaneous irradiation of an interference field generated by two coherent red beams. This study ascribes the formation of the BGs to the green-beam-induced dye reorientation and elongation of the helical pitch through trans-cis isomerization and red-beam-induced suppression of dye reorientation and elongation of the helical pitch by cis-trans back isomerization. The diffraction characteristics strongly depended on the helical pitch of the cholesteric structure, the polarization state of the probe beam, and the relative intensity of the green and red beams. Application of the finite-difference time-domain method demonstrated that the model of photoinduced distortion of the cholesteric liquid crystal structure satisfactorily explains this dependence.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
    [CrossRef]
  2. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
    [CrossRef]
  3. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [CrossRef]
  4. T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
    [CrossRef]
  5. Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. C 5(3), 247–265 (2004).
    [CrossRef]
  6. Y. J. Wang and G. O. Carlisle, “Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Mater. Sci. Mater. Electron. 13(3), 173–178 (2002).
    [CrossRef]
  7. H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
    [CrossRef]
  8. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
    [CrossRef]
  9. T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid-crystal composites,” Appl. Opt. 47(13), 2192–2200 (2008).
    [CrossRef] [PubMed]
  10. C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
    [CrossRef]
  11. F. Simoni and O. Francescangeli, “Effect of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11(41), R439–R487 (1999).
    [CrossRef]
  12. Y. J. Wang, M. Pei, and G. O. Carlisle, “Polarization-independent photochromic diffraction in a dye-doped liquid crystal,” Opt. Lett. 28(10), 840–842 (2003).
    [CrossRef] [PubMed]
  13. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  14. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
    [CrossRef]
  15. H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
    [CrossRef] [PubMed]
  16. H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
    [CrossRef]
  17. H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
    [CrossRef]
  18. T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
    [CrossRef]
  19. S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
    [CrossRef]
  20. A. Taflove and S. C. Gedne, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2005).
  21. M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
    [CrossRef]
  22. C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
    [CrossRef]
  23. E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).
  24. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).
  25. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
    [CrossRef]
  26. E. Hecht, Optics (Addison Wesley, 2002).
    [PubMed]
  27. C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14(24), 11870–11884 (2006).
    [CrossRef] [PubMed]
  28. W. Greubel, “Bistability behavior of texture in cholesteric liquid crystals in an electric field,” Appl. Phys. Lett. 25(1), 5–7 (1974).
    [CrossRef]
  29. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).

2010

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

2009

T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
[CrossRef]

2008

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid-crystal composites,” Appl. Opt. 47(13), 2192–2200 (2008).
[CrossRef] [PubMed]

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

2007

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

2006

H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[CrossRef]

C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14(24), 11870–11884 (2006).
[CrossRef] [PubMed]

2004

M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[CrossRef]

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. C 5(3), 247–265 (2004).
[CrossRef]

2003

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

Y. J. Wang, M. Pei, and G. O. Carlisle, “Polarization-independent photochromic diffraction in a dye-doped liquid crystal,” Opt. Lett. 28(10), 840–842 (2003).
[CrossRef] [PubMed]

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

2002

Y. J. Wang and G. O. Carlisle, “Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Mater. Sci. Mater. Electron. 13(3), 173–178 (2002).
[CrossRef]

2000

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[CrossRef]

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

1999

F. Simoni and O. Francescangeli, “Effect of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11(41), R439–R487 (1999).
[CrossRef]

1997

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
[CrossRef]

1991

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

1990

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

1974

W. Greubel, “Bistability behavior of texture in cholesteric liquid crystals in an electric field,” Appl. Phys. Lett. 25(1), 5–7 (1974).
[CrossRef]

1966

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

Carlisle, G. O.

Y. J. Wang, M. Pei, and G. O. Carlisle, “Polarization-independent photochromic diffraction in a dye-doped liquid crystal,” Opt. Lett. 28(10), 840–842 (2003).
[CrossRef] [PubMed]

Y. J. Wang and G. O. Carlisle, “Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Mater. Sci. Mater. Electron. 13(3), 173–178 (2002).
[CrossRef]

Chang, H. J.

H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
[CrossRef]

Chen, G. H.

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

Chen, Y.-S.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Cheng, K. T.

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Choi, H.

H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
[CrossRef]

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[CrossRef]

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[CrossRef]

Denariez-Roberge, M. M.

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
[CrossRef]

Doi, K.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Emoto, A.

T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
[CrossRef]

Escuti, M. J.

Francescangeli, O.

F. Simoni and O. Francescangeli, “Effect of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11(41), R439–R487 (1999).
[CrossRef]

Fu, T. L.

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Fuh, A. Y. G.

M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[CrossRef]

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Fuh, A. Y.-G.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Galstyan, T. V.

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[CrossRef]

Greubel, W.

W. Greubel, “Bistability behavior of texture in cholesteric liquid crystals in an electric field,” Appl. Phys. Lett. 25(1), 5–7 (1974).
[CrossRef]

Harada, H.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Huang, C. M.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Huang, C. Y.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Huang, S. Y.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Huang, S.-Y.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Ichimura, K.

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[CrossRef]

Ikeda, T.

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. C 5(3), 247–265 (2004).
[CrossRef]

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Jau, H.-C.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Kanazawa, A.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Kawatsuki, N.

Lee, C. R.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[CrossRef]

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Lee, H. K.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Lee, M. R.

M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[CrossRef]

Li, M.-S.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

Liu, J.-H.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Lo, K. C.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Lo, K. Y.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Mo, T. S.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Oh, C.

Ono, H.

T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
[CrossRef]

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid-crystal composites,” Appl. Opt. 47(13), 2192–2200 (2008).
[CrossRef] [PubMed]

Park, B.

H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
[CrossRef]

Pei, M.

Pelcovits, R. A.

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[CrossRef]

Saad, B.

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
[CrossRef]

Sasaki, T.

T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
[CrossRef]

T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid-crystal composites,” Appl. Opt. 47(13), 2192–2200 (2008).
[CrossRef] [PubMed]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Shioda, T.

T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
[CrossRef]

Shiono, T.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Simoni, F.

F. Simoni and O. Francescangeli, “Effect of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11(41), R439–R487 (1999).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Tsai, H. Y.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Tsutsumi, O.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Wang, J. D.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Wang, J. R.

M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[CrossRef]

Wang, Y. H.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

Wang, Y. J.

Y. J. Wang, M. Pei, and G. O. Carlisle, “Polarization-independent photochromic diffraction in a dye-doped liquid crystal,” Opt. Lett. 28(10), 840–842 (2003).
[CrossRef] [PubMed]

Y. J. Wang and G. O. Carlisle, “Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Mater. Sci. Mater. Electron. 13(3), 173–178 (2002).
[CrossRef]

Wu, J. W.

H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
[CrossRef]

Yang, P.-C.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

Yeh, H. C.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. C 5(3), 247–265 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[CrossRef]

H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006).
[CrossRef]

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009).
[CrossRef]

M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[CrossRef]

C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

W. Greubel, “Bistability behavior of texture in cholesteric liquid crystals in an electric field,” Appl. Phys. Lett. 25(1), 5–7 (1974).
[CrossRef]

Chem. Rev.

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[CrossRef]

IEEE Trans. Antenn. Propag.

K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

J. Chem. Phys.

H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
[CrossRef]

J. Mater. Chem.

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

J. Mater. Sci. Mater. Electron.

Y. J. Wang and G. O. Carlisle, “Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Mater. Sci. Mater. Electron. 13(3), 173–178 (2002).
[CrossRef]

J. Photochem. Photobiol. C

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. C 5(3), 247–265 (2004).
[CrossRef]

J. Phys. Chem. B

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

J. Phys. Condens. Matter

F. Simoni and O. Francescangeli, “Effect of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11(41), R439–R487 (1999).
[CrossRef]

Nature

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Opt. Commun.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

A. Taflove and S. C. Gedne, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2005).

E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).

E. Hecht, Optics (Addison Wesley, 2002).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of the biphotonic gratings in azo-dye-doped cholesteric liquid crystal films. (a) The photoinduced variations in the CLC structure created by one s-polarized green beam and two coherent s-polarized red beams. (b) The intensity distribution of the interference field along the x axis.

Fig. 2
Fig. 2

Dependence of the first order diffraction efficiency on the intensity of the green beam for sample 1 probed using left-handed circularly (LHC)-, s-, p- and right-handed circularly (RHC)-polarized beams. The intensity of each red pump beam is 909 mW/cm2.

Fig. 3
Fig. 3

Dependences of the first order diffraction efficiency on the intensity of the green beam for sample 2, probed using LHC-, s-, p- and RHC-polarized beams. The intensity of each red pump beam is (a) 909 mW/cm2 and (b) 340 mW/cm2.

Fig. 4
Fig. 4

Dependence of the normalized Stokes parameters of the first order diffracted beam versus the intensity of the green beam for (i) LHC-, (ii) s-, (iii) p-, and (iv) RHC-polarized probe beams. The filled and open symbols represent the experimental and simulation results, respectively. The intensity of each red pump beam is (a) 909 mW/cm2 and (b) 340 mW/cm2.

Fig. 5
Fig. 5

Transmission spectra of sample 2 with varying intensities of the green beam (a) at the initiation of excitation and (b) in photostationary equilibrium (approximately 3 min of irradiation).

Fig. 6
Fig. 6

The effects of photoirradiation on (a) the midlayer tilt angle θm , (b) the helical pitch P, and the birefringence Δn in the inset for sample 2. The green diamonds correspond to the results fitting the transmission spectra in Fig. 5 under irradiation with the green beam. The blue and red diamonds correspond to the results fitting the first order diffraction efficiencies in Figs. 3(a) and 3(b), respectively.

Fig. 7
Fig. 7

(a) Schematic layout of the two-dimensional FDTD simulation space. (b) The tilt angle θ of the LC director along the z axis. (c) The midlayer tilt angle θm along the x axis in one spatial period. θmR and θmG correspond to the midlayer tilt angle in the centers of regions R and G, respectively.

Fig. 8
Fig. 8

Calculated development of (i) the x component, (ii) the y component, and (iii) the z component of the electric field at the near-field collection line in one temporal period for (a) LHC-, (b) s-, (c) p-, and (d) RHC-polarized probe beams with the same intensity. The intensities of the red and green beams forming BGs are 909 mW/cm2 and 306 mW/cm2, respectively. Axes x and t are scaled in the grid spacing Δx and the time step Δt, respectively.

Fig. 9
Fig. 9

Polarization of the transmitted light at the centers of regions R (red lines) and G (green lines) for (a) LHC-, (b) s-, (c) p-, and (d) RHC-polarized probe beams. The asterisks indicate the electric fields at the beginning of the temporal period.

Tables (1)

Tables Icon

Table 1 Overview of FDTD Simulation Parameters

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = cos 2 ( π x Λ ) .
E n = E n 1 + Δ t ε 0 ε ˜ 1 × H n 1 / 2
H n + 1 / 2 = H n 1 / 2 Δ t μ 0 × E n
ε ˜ = [ ε x x ε x y ε x z ε y x ε y y ε y z ε z x ε z y ε z z ]
ε x x = n o 2 + ( n e 2 n o 2 ) cos 2 θ cos 2 φ ε x y = ε y x = ( n e 2 n o 2 ) cos 2 θ sin φ cos φ ε x z = ε z x = ( n e 2 n o 2 ) cos θ sin θ cos φ ε y y = n o 2 + ( n e 2 n o 2 ) cos 2 θ sin 2 φ ε y z = ε z y = ( n e 2 n o 2 ) cos θ sin θ sin φ ε z z = n o 2 + ( n e 2 n o 2 ) sin 2 θ
Λ sin θ m = m λ
E / / m ( t ) = 1 Λ 0 Λ [ E x ( t , x ) cos θ m E z ( t , x ) sin θ m ] exp ( j 2 π m Λ x ) d x
E m ( t ) = 1 Λ 0 Λ E y ( t , x ) exp ( j 2 π m Λ x ) d x
I m = 1 T t T / 2 t + T / 2 c 2 ε 0 ( | E / / m ( t ) | 2 + | E m ( t ) | 2 ) d t .
θ m ( x ) = θ m R + ( θ m G θ m R ) sin ( π x Λ )
P ( x ) = P R + ( P G P R ) sin 2 ( π x Λ )
s : E y = cos ω t
p : E x = sin ω t
LHC : E x = sin ω t , E y = cos ω t
RHC : E x = sin ω t , E y = cos ω t

Metrics