Abstract

We investigate strong coupling between a single quantum dot (QD) and photonic crystal cavity through transmission modification of an evanescently coupled waveguide. Strong coupling is observed through modification of both the cavity scattering spectrum and waveguide transmission. We achieve an overall Q of 5800 and an exciton-photon coupling strength of 21 GHz for this integrated cavity-waveguide structure. The transmission contrast for the bare cavity mode is measured to be 24%. These results represent important progress towards integrated cavity quantum electrodynamics using a planar photonic architecture.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  3. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  4. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
    [CrossRef] [PubMed]
  5. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
    [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  7. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  8. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
    [CrossRef] [PubMed]
  9. Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
    [CrossRef]
  10. A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
    [CrossRef]
  11. F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
    [CrossRef]
  12. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
    [CrossRef] [PubMed]
  13. I. Fushman, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Ph.D. Dissertation, Stanford Univ., 2009.
  14. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
    [CrossRef]
  15. M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
    [CrossRef] [PubMed]
  16. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  17. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  18. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [CrossRef] [PubMed]
  19. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13(13), 5064–5073 (2005).
    [CrossRef] [PubMed]
  20. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
    [CrossRef] [PubMed]
  21. D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78(5), 052321 (2008).
    [CrossRef]
  22. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [CrossRef] [PubMed]
  23. L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
    [CrossRef]
  24. H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
    [CrossRef]
  25. L. M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,” Phys. Rev. Lett. 95(8), 080503 (2005).
    [CrossRef] [PubMed]
  26. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [CrossRef] [PubMed]
  27. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
    [CrossRef] [PubMed]
  28. D. F. Walls, and G. J. Millburn, Quantum Optics (Springer, 2008).
  29. S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70(19), 195313 (2004).
    [CrossRef]
  30. J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
    [CrossRef]
  31. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
    [CrossRef]
  32. A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
    [CrossRef]
  33. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
    [CrossRef]
  34. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
    [CrossRef]

2010

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[CrossRef]

2009

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[CrossRef]

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

2008

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78(5), 052321 (2008).
[CrossRef]

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
[CrossRef] [PubMed]

2007

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
[CrossRef] [PubMed]

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

2006

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[CrossRef] [PubMed]

2005

L. M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,” Phys. Rev. Lett. 95(8), 080503 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13(13), 5064–5073 (2005).
[CrossRef] [PubMed]

2004

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70(19), 195313 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

2001

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

1999

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

1998

H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Atkinson, P.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Awschalom, D. D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Badolato, A.

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Bennett, A. J.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Briegel, H. J.

H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[CrossRef]

Brossard, F. S. F.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Burkard, G.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Cirac, J.

H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[CrossRef]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Cooper, K.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

DiVincenzo, D. P.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Duan, L. M.

L. M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,” Phys. Rev. Lett. 95(8), 080503 (2005).
[CrossRef] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Dür, W.

H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Fan, S.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[CrossRef]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

Fejer, M. M.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hadjipanayi, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Harris, J. S.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hennessy, K. J.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

Hopkinson, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Hu, E. L.

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hudson, A. J.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Hughes, S.

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70(19), 195313 (2004).
[CrossRef]

Hugues, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Huo, Y.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Imamoglu, A.

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Ishida, S.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Iwamoto, S.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Jiang, L.

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

Kamada, H.

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70(19), 195313 (2004).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kuga, T.

Kumagai, N.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Kuramochi, E.

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Loss, D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Lukin, M. D.

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

McNab, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Mitsugi, S.

Moll, N.

Morita, M.

Munro, W. J.

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

Nemoto, K.

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

Nicoll, C. A.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Nomura, M.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Notomi, M.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Ohkouchi, S.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Ota, Y.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Pan, J.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

Povinelli, M. L.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Raussendorf, R.

L. M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,” Phys. Rev. Lett. 95(8), 080503 (2005).
[CrossRef] [PubMed]

Ritchie, D. A.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Sandhu, S.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shen, J.-T.

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[CrossRef]

Sherwin, M.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Shields, A. J.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Shinya, A.

Shirane, M.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Small, A.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Sridharan, D.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[CrossRef]

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78(5), 052321 (2008).
[CrossRef]

Stevenson, R. M.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

Stuhrmann, N.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Tanabe, T.

Taniyama, H.

Taylor, J. M.

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

Taylor, R. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Torii, Y.

Van Meter, R.

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

Vlasov, Y.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Vuckovic, J.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13(13), 5064–5073 (2005).
[CrossRef] [PubMed]

Waks, E.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[CrossRef]

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78(5), 052321 (2008).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13(13), 5064–5073 (2005).
[CrossRef] [PubMed]

Wang, X.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Williams, D. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Winger, M.

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Wong, C. W.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Xu, X. L.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Yamamoto, T.

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Yorozu, S.

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Yoshikawa, Y.

Young, R. J.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[CrossRef]

Appl. Phys. Express

Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot Nanocavity System,” Appl. Phys. Express 2(12), 122301 (2009).
[CrossRef]

Appl. Phys. Lett.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[CrossRef]

C. R. Phys.

A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Cavity QED effects with single quantum dots,” C. R. Phys. 9(8), 850–856 (2008).
[CrossRef]

Nat. Mater.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. A

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[CrossRef]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[CrossRef]

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79(3), 032325 (2009).
[CrossRef]

D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78(5), 052321 (2008).
[CrossRef]

Phys. Rev. B

S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70(19), 195313 (2004).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[CrossRef]

Phys. Rev. Lett.

A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Coherence of an entangled exciton-photon state,” Phys. Rev. Lett. 99(26), 266802 (2007).
[CrossRef]

H. J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[CrossRef]

L. M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,” Phys. Rev. Lett. 95(8), 080503 (2005).
[CrossRef] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett. 101(22), 226808 (2008).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[CrossRef] [PubMed]

Science

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Other

I. Fushman, “Quantum dots in photonic crystals: From quantum information processing to single photon nonlinear optics,” Ph.D. Dissertation, Stanford Univ., 2009.

D. F. Walls, and G. J. Millburn, Quantum Optics (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of simulated structure. (b) Simulated photonic band structure for photonic crystal waveguide with waveguide-edge holes reduced by 4%. The light line is shown by solid red line. (c) Field profile (H)z of computed cavity-field mode, shown over the simulation region in (a). (d) Simulated transmission spectrum (solid blue line), along with the spectral response of the fundamental cavity mode (dashed red line) computed using a broadband source inside the cavity.

Fig. 2
Fig. 2

a. (a) Scanning electron micrograph showing a typical fabricated device. (b) Closeup of the cavity-waveguide region, showing the design adjustments for optimal performance. (c) Closeup of the input grating coupler. Scale bars in (b) & (c) correspond to 1 μm. (d) Low power (5 μW) above-band excitation of the cavity.

Fig. 3
Fig. 3

(a) Temperature scan of the cavity QD system using above-band (780 nm) excitation showing an anti-crossing around 27 K due to strong coupling. (b) Cavity spectrum at the strong coupling point using low power excitation, with a measured splitting of 0.09 nm between the polariton peaks.

Fig. 4
Fig. 4

(a) CCD image of the device under laser excitation showing radiation at the input and output gratings as well as the cavity region when the laser is tuned to the resonance of the cavity mode. An SEM of the typical device is also shown on the left for reference. (b) Photoluminescence spectrum of the cavity-QD system when the QD is detuned by 0.3 nm from the cavity mode. (c) Transmission measured at the same QD-cavity detuning condition as in (b) showing a dip corresponding to the cavity transmission.

Fig. 5
Fig. 5

(a) Scattering spectrum for QD-cavity system in the weak-field condition at 27 K. (b) Transmission spectrum of the cavity-QD system on resonance at 27 K. (c) Transmission measured as a function of temperature between 20- and 32K showing an anti-crossing between the anti-resonances corresponding to the two polaritons.

Fig. 6
Fig. 6

(a) Cavity emission for increasing excitation powers of the input laser with incident powers, from top to bottom, of 100 μW, 60 μW, and 5 μW. (b) Waveguide transmission measurement at 5 μW. (c) Waveguide transmission at 125 μW. In (b) and (c) fitting curves are shown using solid lines, while the experimental data is shown using circles.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 g Δ 2 + ( κ γ ) 2 / 4 ,
S T ( ω ) = | ε ( ω ) | 2 | i 2 Δ c + κ ( 1 r 0 ) i 2 Δ c + κ | 2 .
n = 4 4 Δ c 2 + κ 2 ( g 2 | ρ 21 | 2 Γ [ γ a + 2 g 2 κ 4 Δ c 2 + κ ] + 2 g κ Im [ ε * ρ 21 ] + κ | ε | 2 ) .
ρ 21 = Ω ( i Δ c + κ / 2 ) ( i Δ a + γ a ) ( i Δ c + κ / 2 ) + g 2 ,
A = κ ε ( ω ) ( i Δ a + γ a ) ( i Δ c + κ / 2 ) ( i Δ a + γ a ) + g 2 .

Metrics