Abstract

This paper reports the demonstration of a continuously-tunable true-time delay line for microwave photonics and optical communications capable of high-resolution phase control throughout the 1-100 GHz modulation range. A fiber-coupled device is demonstrated with 75 ps of continuous delay tuning range, 3 dB optical insertion loss, and minimal RF amplitude and phase variation over the 4-18 GHz band. Measured delay ripple was less than 0.2 ps. Theoretical analysis is also presented which indicates scalability to delay tuning ranges over 1000 ps and modulation bandwidths over 10 THz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  3. R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol. 24(12), 4655–4673 (2006).
    [CrossRef]
  4. K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
    [CrossRef]
  5. D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
    [CrossRef]
  6. D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
    [CrossRef]
  7. B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16(4), 2398–2404 (2008).
    [CrossRef] [PubMed]
  8. V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
    [CrossRef]
  9. M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45(8), 1522–1526 (1997).
    [CrossRef]
  10. N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
    [CrossRef]
  11. D. Piao and Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40(2), 97–98 (2004).
    [CrossRef]
  12. Z. Jiang, Q. Zhu, and D. Piao, “Minimization of geometric-beam broadening in a grating-based time-domain delay line for optical coherence tomography application,” J. Opt. Soc. Am. A 24(12), 3808–3818 (2007).
    [CrossRef]
  13. A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
    [CrossRef]
  14. V. J. Urick and F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
    [CrossRef]
  15. P. G. Agrawal, Fiber-Optic Communications Systems, 2nd. ed. (Wiley, 1997).

2008 (2)

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
[CrossRef]

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express 16(4), 2398–2404 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol. 24(12), 4655–4673 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

2005 (1)

V. J. Urick and F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[CrossRef]

2004 (2)

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

D. Piao and Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40(2), 97–98 (2004).
[CrossRef]

2003 (1)

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

1997 (2)

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45(8), 1522–1526 (1997).
[CrossRef]

K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
[CrossRef]

1986 (1)

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Alferness, R. C.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Alic, N.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
[CrossRef]

Bowers, J. E.

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

Bucholtz, F.

V. J. Urick and F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[CrossRef]

Buhl, L. L.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Charaplyvy, A. R.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Coles, J. B.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
[CrossRef]

Culhane, R.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Culsahw, B.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Dakin, J. P.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Deng, K.-L.

K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
[CrossRef]

Dexter, J. L.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

Esman, R. D.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45(8), 1522–1526 (1997).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45(8), 1522–1526 (1997).
[CrossRef]

Glask, I.

K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
[CrossRef]

Guo, Y.

Helkey, C.

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

Henderson, D. A.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Hoffman, C.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Hunter, D. B.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

Jiang, Z.

Kaman, V.

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

Kang, K. I.

K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
[CrossRef]

Marcus, M. A.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Matthews, P. J.

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45(8), 1522–1526 (1997).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Parker, M. E.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

Piao, D.

Prucnal, P.

K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
[CrossRef]

Pusarla, C.

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

Radic, S.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
[CrossRef]

Seeds, A. J.

Tkach, R. W.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Tucker, R. S.

Urick, V. J.

V. J. Urick and F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[CrossRef]

Viggiano, D.

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Williams, K. J.

Windmiller, J. R.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
[CrossRef]

Xuezhe Zheng, R. J.

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

Yu, X.

Zhang, H.

Zheng, X.

Zhou, B.

Zhu, Q.

Electron. Lett. (2)

D. Piao and Q. Zhu, “Power-efficient grating-based scanning optical delay line: time-domain configuration,” Electron. Lett. 40(2), 97–98 (2004).
[CrossRef]

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fiber,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. 14(3), 681–690 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K.-L. Deng, I. Glask, P. Prucnal, and K. I. Kang, “A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks,” IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997).
[CrossRef]

V. Kaman, R. J. Xuezhe Zheng, C. Helkey, C. Pusarla, and J. E. Bowers, “A 32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[CrossRef]

V. J. Urick and F. Bucholtz, “Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver,” IEEE Photon. Technol. Lett. 17(4), 893–895 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microw. Theory Tech. 45(8), 1522–1526 (1997).
[CrossRef]

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Proc. SPIE (1)

D. A. Henderson, C. Hoffman, R. Culhane, D. Viggiano, M. A. Marcus, B. Culsahw, and J. P. Dakin, “Kilohertz scanning, all-fiber optical delay line using piezoelectric actuation,” Proc. SPIE 5589, 99–106 (2004).
[CrossRef]

Other (1)

P. G. Agrawal, Fiber-Optic Communications Systems, 2nd. ed. (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the beam-scanned grating delay line studied in this work, and (b) the theoretical relationship between the lens clear aperture and the maximum delay tuning range, assuming a Littrow configuration. In (a), a rotatable mirror served as a beam deflector, which scanned the optical beam across a stationary diffraction grating to produce a variable delay.

Fig. 2
Fig. 2

Experimental setup used to test the RF response of the BSG delay line. The network analyzer was first calibrated with the connectorized fibers from the polarization controller and photodiode directly connected. The delay line was then inserted into the system for testing via its connectorized fibers.

Fig. 3
Fig. 3

(a) Measured RF phase for various beam deflection adjusted for a common 7.8558 ns delay, and (b) resulting RF phase delay. The flat response in (b) indicates a true RF time delay.

Fig. 4
Fig. 4

Measured relationships between (a) the RF delay and (b) the RF and optical transmission with beam deflection angle. Data in (b) are for lens-to-mirror distances (●) close to the paraxial focal length, and (■) adjusted to focus non-paraxial rays. The tendency for loss to vary significantly with deflection angle, and to improve at large angles as the lens was defocused, is indicative of significant lens spherical aberration.

Fig. 5
Fig. 5

Measured RF transmission versus frequency at θ = 0, indicating a flat amplitude response. Similarly flat response was observed for all beam deflection angles.

Fig. 6
Fig. 6

Maximum beam diameter at the grating (a), due to spectral beam broadening, and minimum beam diameter at the grating (b), due to the changing system optical path length.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

y = F tan θ
τ = 2 y tan ψ c = 2 F tan ψ tan θ c ,
τ = Φ R F 2 π f R F .
ω 0 m i r r o r ω 0 g r a t i n g = F λ π ,
Δ α = | m ψ | Δ λ λ = 2 | m ψ | f R F f c a r r i e r ,
ω 0 g r a t i n g c m π ψ f R F
Δ z g r a t i n g = c Δ τ max .
Δ z f i b e r z 0 f i b e r = Δ z g r a t i n g z 0 g r a t i n g
ω 0 g r a t i n g c λ Δ τ max 2 π
Δ y g r a t i n g = c Δ τ max Δ α 2 .
Δ y g r a t i n g 2 ω 0 g r a t i n g = Δ y m i r r o r 2 ω 0 m i r r o r .
ω 0 g r a t i n g c Δ τ max Δ α 4 .
ω 0 g r a t i n g ( min ) ω 0 g r a t i n g ( min ) = π Δ α ω 0 g r a t i n g ( min ) 4 λ .
ω 0 g r a t i n g ( min ) ω 0 g r a t i n g ( min ) = n ω 0 g r a t i n g ( min ) 2 ω 0 g r a t i n g ( max ) ,

Metrics