Abstract

Forward stimulated Brillouin scattering (FSBS) is observed in a standard 2-km-long highly nonlinear fiber. The frequency of FSBS arising from multiple radially guided acoustic resonances is observed up to gigahertz frequencies. The tight confinement of the light and acoustic field enhances the interaction and results in a large gain coefficient of 34.7 W−1 at a frequency of 933.8 MHz. We also find that the profile on the anti-Stokes side of the pump beam have lineshapes that are asymmetric, which we show is due to the interference between FSBS and the optical Kerr effect. The measured FSBS resonance linewidths are found to increase linearly with the acoustic frequency. Based on this scaling, we conclude that dominant contribution to the linewidth is from surface damping due to the fiber jacket and structural nonuniformities along the fiber.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  2. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
    [CrossRef] [PubMed]
  3. Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
    [CrossRef]
  4. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
    [CrossRef] [PubMed]
  5. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
    [CrossRef]
  6. M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010).
    [CrossRef]
  7. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
    [CrossRef] [PubMed]
  8. M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009).
    [CrossRef] [PubMed]
  9. M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
    [CrossRef]
  10. N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006).
    [CrossRef]
  11. J. C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32(1), 17–19 (2007).
    [CrossRef]
  12. P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990).
    [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2008), Ch. 9.
  14. E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999).
    [CrossRef]
  15. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), Ch. 2.
  17. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2006), Ch.3.
  18. S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1132–1137 (2003).
    [CrossRef]
  19. A. J. Poustie, “Bandwidth and mode intensities of guided acoustic-wave Brillouin scattering in optical fibers,” J. Opt. Soc. Am. B 10(4), 691–696 (1993).
    [CrossRef]
  20. D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media determination of phonon lifetimes,” Phys. Rev. 1(1), 31–43 (1970).
    [CrossRef]
  21. E. K. Sittig and G. A. Coquin, “Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation,” J. Acoust. Soc. Am. 48(5B), 1150–1159 (1970).
    [CrossRef]

2010 (2)

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010).
[CrossRef]

2009 (2)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[CrossRef]

M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009).
[CrossRef] [PubMed]

2008 (1)

M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
[CrossRef]

2007 (2)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

J. C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32(1), 17–19 (2007).
[CrossRef]

2006 (2)

2003 (1)

1999 (1)

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999).
[CrossRef]

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1993 (1)

1991 (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[CrossRef] [PubMed]

1990 (1)

P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990).
[CrossRef]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

1970 (2)

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media determination of phonon lifetimes,” Phys. Rev. 1(1), 31–43 (1970).
[CrossRef]

E. K. Sittig and G. A. Coquin, “Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation,” J. Acoust. Soc. Am. 48(5B), 1150–1159 (1970).
[CrossRef]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Beugnot, J. C.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[CrossRef] [PubMed]

Brenn, A.

M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010).
[CrossRef]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[CrossRef]

M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
[CrossRef]

Cabrera-Granado, E.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

Calderon, O. G.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

Cambon, P.

Coquin, G. A.

E. K. Sittig and G. A. Coquin, “Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation,” J. Acoust. Soc. Am. 48(5B), 1150–1159 (1970).
[CrossRef]

Culverhouse, R.

P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990).
[CrossRef]

Dainese, P.

Farahi, F.

P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990).
[CrossRef]

Fragnito, H. L.

Gaeta, A. L.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Haakestad, M. W.

Joly, N.

Kaiser, W.

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media determination of phonon lifetimes,” Phys. Rev. 1(1), 31–43 (1970).
[CrossRef]

Kang, M. S.

M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010).
[CrossRef]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[CrossRef]

M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
[CrossRef]

Khelif, A.

Laude, V.

Le Floch, S.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Maillotte, H.

Mélin, G.

Melle, S.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

Nakazono, A.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006).
[CrossRef]

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Okawachi, Y.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

Peral, E.

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999).
[CrossRef]

Pohl, D.

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media determination of phonon lifetimes,” Phys. Rev. 1(1), 31–43 (1970).
[CrossRef]

Poustie, A. J.

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Russell, P. St. J.

M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010).
[CrossRef]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[CrossRef]

M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990).
[CrossRef]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Shibata, N.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006).
[CrossRef]

Sittig, E. K.

E. K. Sittig and G. A. Coquin, “Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation,” J. Acoust. Soc. Am. 48(5B), 1150–1159 (1970).
[CrossRef]

Skaar, J.

Sylvestre, T.

Taguchi, N.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006).
[CrossRef]

Tanaka, S.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Wiederhecker, G. S.

M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

Yariv, A.

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999).
[CrossRef]

Zhu, Y.

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. S. Kang, A. Brenn, G. S. Wiederhecker, and P. St. J. Russell, “Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers,” Appl. Phys. Lett. 93(13), 131110 (2008).
[CrossRef]

Electron. Lett. (1)

P. St. J. Russell, R. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single core fiber,” Electron. Lett. 26(15), 1195–1196 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Peral and A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(8), 1185–1195 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18(2), 412–414 (2006).
[CrossRef]

J. Acoust. Soc. Am. (1)

E. K. Sittig and G. A. Coquin, “Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation,” J. Acoust. Soc. Am. 48(5B), 1150–1159 (1970).
[CrossRef]

J. Lightwave Technol. (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

J. Opt. (1)

Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, “Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device,” J. Opt. 12(10), 104019 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media determination of phonon lifetimes,” Phys. Rev. 1(1), 31–43 (1970).
[CrossRef]

Phys. Rev. A (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44(5), 3205–3209 (1991).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. S. Kang, A. Brenn, and P. St. J. Russell, “All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber,” Phys. Rev. Lett. 105(15), 153901 (2010).
[CrossRef]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other (3)

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2008), Ch. 9.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007), Ch. 2.

K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2006), Ch.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Intensity of the fundamental optical HE11 mode (black line) and the density variation ρ 0 ( m ) of the acoustic mode R0(1) (red dash and dot line) and R0(20) (blue dash line). (b) The transverse second derivative of the intensity of the fundamental optical mode (black line) and the density of acoustic mode R0(1) (red dash and dot line) and R0(20) mode (blue dash line).

Fig. 2
Fig. 2

Frequency dependence of the Stokes/anti-Stokes gain near the R0(20) resonance at 933.8 MHz. Stokes beam gain without (a) and with (c) the Kerr effect. Anti-Stokes gain without (b) and with (d) the Kerr effect.

Fig. 3
Fig. 3

The experiment setup of FSBS in HNLF. DMZM, dual-module Mach-Zender modulator; SMZM, single-module Mach-Zender modulator; EDFA, erbium-doped fiber amplifier; FBG, fiber Bragg grating; FPC; fiber polarization controllers; PR, photoreceiver; SA, electronical spectrum analyzer.

Fig. 4
Fig. 4

FSBS Stokes and anti-Stokes gain spectra for a pump power of 8 mW. Blue solid line is experimental results and red dashed line is theoretical simulation.

Fig. 5
Fig. 5

(a) The power of the Stokes beam for FSBS at 933.8 MHz. Experiment data are shown as blue dot and black dash line is Lorentz fitting. The linewidth nearly 7.5 MHz at frequency 933.8 MHz. (b) Measured linewidth (blue dot) of the FSBS resonances from 425 MHz to 1.1 GHz, linear fitting is shown in red line.

Tables (1)

Tables Icon

Table 1 Measured and calculated FSBS resonant frequencies in the HNLF. A cladding diameter of 127 μm is used in the calculation.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

2 E z 2 n eff 2 c 2 2 E t 2 = 1 ε 0 c 2 2 P NL t 2 ,
2 ρ t 2 ( V L 2 + Γ t ) 2 ρ = f = 1 2 ε 0 γ e 2 E 2 ¯ ,
E ( r , φ , z , t ) = E o ( r , φ ) k a k ( z , t ) exp { i [ ( β 0 k q ) z ( ω 0 k Ω ) t ] } + c . c . ,
ρ m ( r , z , t ) = ρ 0 ( m ) ( r ) b m ( z , t ) exp [ i ( q m z Ω m t ) ] + c . c . ,
d a k d z = m i ( γ A m a k 1 n a n 1 * a n + γ A m * a k + 1 n a n 1 a n * ) ,
γ A m = ε 0 ω 0 γ e 2 Q 0 ( m ) Q 1 ( m ) 2 n eff c ρ 0 1 Ω m 2 Ω A m 2 + i Ω m Γ B m ,
Q 0 ( m ) = E o 2 , ρ 0 m 0 2 π 0 a E o 2 ρ 0 m r d r d φ ,
Q 1 ( m ) = 2 E o 2 , ρ 0 m 0 2 π 0 a 2 E o 2 ρ 0 m r d r d φ .
g 0 ( m ) = ω 0 γ e 2 | Q 0 ( m ) Q 1 ( m ) | 2 n eff 2 c 2 ρ Ω 0 A m Γ B m .
d a k d z = i γ K [ ( | a k | 2 + 2 p k | a p | 2 ) a k + ( 2 p + q l = k p , q , l k a p a q a l * e i θ p q l + 2 p q = k p , q k a p 2 a q * e i θ p q ) ] ,
d a -1 d z + α 2 a 1 = i m ( ξ m a -1 + κ m a 1 * ) ,
d a 1 d z + α 2 a 1 = i m ( ξ m * a 1 + κ m * a -1 * ) ,
a 1 ( z ) = a 1 ( 0 ) [ cosh ( s m z ) + i ξ m s m sinh ( s m z ) ] ,
a 1 ( z ) = i κ m * s m * a 1 * ( 0 ) sinh ( s m * z ) ,
a 1 ( z ) = a 1 ( 0 ) ( 1 + i ξ m z ) ,
a 1 ( z ) = a 1 * ( 0 ) i κ m * z .
Γ B m = 2 π × [0 .004( Ω m / 2 π)+4 .2 (MHz)]
Γ B m = Γ inhomo + Γ viscosity + Γ surface ,

Metrics