Abstract

We propose a spatial quantization method to discretize a single subwavelength metallic slit into identical unit chains and investigate its transmission properties. Finite-difference time-domain simulations suggest that the formation of multiple fundamental plasmon resonances and their mutual coupling processes play dominant roles in the quantized structure, which eventually alters the surface plasmon energy propagation into a hopping style. Through adjusting the groove geometrical parameters, the optical transmission can be further increased by as high as about 1000% or suppressed to zero when compared with a corresponding untreated slit. We expect these findings to have potential applications in subwavelength optics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
    [CrossRef]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  4. I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
    [CrossRef]
  5. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [CrossRef]
  6. S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15(7), 4310–4320 (2007).
    [CrossRef] [PubMed]
  7. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [CrossRef]
  8. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [CrossRef] [PubMed]
  9. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
    [CrossRef] [PubMed]
  10. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
    [CrossRef]
  11. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
    [CrossRef] [PubMed]
  12. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007).
    [CrossRef]
  13. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  14. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]
  15. Y. Wang, Y. Wang, Y. Zhang, and S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009).
    [CrossRef] [PubMed]
  16. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [CrossRef] [PubMed]
  17. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
    [CrossRef]
  18. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004).
    [CrossRef] [PubMed]
  19. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
    [CrossRef]
  20. E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic X-junctions,” Opt. Express 15(26), 17948–17953 (2007).
    [CrossRef] [PubMed]
  21. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  22. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
    [CrossRef]
  23. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
    [CrossRef]

2009

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

Y. Wang, Y. Wang, Y. Zhang, and S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009).
[CrossRef] [PubMed]

2008

2007

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007).
[CrossRef]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15(7), 4310–4320 (2007).
[CrossRef] [PubMed]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic X-junctions,” Opt. Express 15(26), 17948–17953 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

2006

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[CrossRef]

2005

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

2004

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

2002

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

2001

1999

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

Bezuglyi, E. V.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

Colas des Francs, G.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

Collin, S.

Degiron, A.

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

Dereux, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Feigenbaum, E.

Fukui, M.

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Genet, C.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Gordon, R.

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
[CrossRef] [PubMed]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

Grandidier, J.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

Haraguchi, M.

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007).
[CrossRef]

Huang, X.-G.

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[CrossRef]

Kats, A. V.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

Lalanne, P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[CrossRef]

Levchenko, A.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Lin, X.-S.

Linke, R. A.

Liu, S.

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Mansuripur, M.

Markey, L.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

Massenot, S.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

Matsuzaki, Y.

Min, Q.

Moloney, J. V.

Nakagaki, M.

Nikitin, A. Yu.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

Okamoto, T.

Orenstein, M.

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Pardo, F.

Pellerin, K. M.

Pelouard, J.-L.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Thio, T.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Wang, Y.

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

Xie, Y.

Zakharian, A. R.

Zhang, Y.

Appl. Phys. Lett.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Nat. Photonics

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

Nat. Phys.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic plot of a spatially quantized single slit structure in a metallic film, associated with identical air grooves embedded in the interior walls.

Fig. 2
Fig. 2

(a) Transmittance of a smooth single slit (w = 100 nm) as a function of the film thickness. (b) Transmittance of the N = 1 spatially quantized slit structure with varying the groove depth for several different h. The slit unit is [w, t] = [100, 280] nm. (c) Peak transmittances of the N = 1 spatially quantized slit structure with varying the groove height for several different w.

Fig. 3
Fig. 3

The calculated density distributions of EM fields inside different single slits but with the same parameters of [L, w] = [880, 100] nm. (a) and (b) represent the electric and magnetic fields distribution profiles, respectively. Among them, the left pictures correspond to the smooth slits, the middle pictures for the N = 1 spatially quantized slits with the unit of [h, d] = [320, 520] nm, and the right pictures for the N = 1 spatially quantized slits with the unit of [h, d] = [320, 320] nm. (c) and (d) summarize the electric and magnetic field variations over the center line passing through the slits, respectively. The vertical solid lines mark the beginning and end of the slit structures, whereas the dashed vertical lines stand for the positions of the embedded grooves.

Fig. 4
Fig. 4

(a) Dependence of the transmittance on the groove depth for multiple pairs of embedded grooves. The slit unit is [w, t] = [100, 280] nm and the groove height is h = 240 nm. (b) Variation of |Sy | at the center line passing through the N = 4 spatially quantized slit with the total length L = 2500 nm. The dashed vertical lines represent the entrance and exit openings of the whole structures.

Fig. 5
Fig. 5

The simulated magnetic field distributions (a) and y-component of Poynting vectors (b) for the smooth (left) and N = 4 spatially quantized (right) single slit structures. Geometrical parameters for the both situations are [w, t] = [100, 280] nm, h = 275 nm, d = 480 nm and L = 2500 nm.

Tables (1)

Tables Icon

Table 1 Optical Transmittances through the Smooth and the Discretized Single Slit Structures (w = 100 nm)

Metrics