Abstract

In this paper we present a simulation study of nanostructures with unit cells of periodic coupled cut-wire pairs for band-stop properties in the optical frequency range. A band-stop filter with a broader stop band for space transmission is realized by making use of plasmon hybridization. The bandwidth of the filter is tunable over a large range from 56.6 to 182.2 THz by magnetic and electric couplings between adjacent unit cells. An equivalent RLC resonant circuit is proposed to analyze the origin of the coupling effects. The bandwidth tunability by the coupling effect provides good guidance for a metamaterial design that works in broadband frequencies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  6. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  8. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  10. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  11. F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
    [CrossRef]
  12. J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
    [CrossRef]
  13. R. Marqués, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, 2008).
  14. M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: a review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
    [CrossRef]
  15. J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17(19), 16527–16534 (2009).
    [CrossRef] [PubMed]
  16. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [CrossRef]
  17. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [CrossRef]
  18. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
    [CrossRef]
  19. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
    [CrossRef]
  20. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [CrossRef] [PubMed]
  21. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  22. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  23. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
    [CrossRef]
  24. X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
    [CrossRef]
  25. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
    [CrossRef] [PubMed]
  26. N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
    [CrossRef]
  27. T. M. Floyd, Principles of Electric Circuits (Prentice Hall, 2010).

2010

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

2009

J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17(19), 16527–16534 (2009).
[CrossRef] [PubMed]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[CrossRef]

2008

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: a review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[CrossRef]

2007

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

2006

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[CrossRef] [PubMed]

2005

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

2003

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Beigang, R.

Bonache, J.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: a review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[CrossRef]

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Cai, W.

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
[CrossRef]

Chettiar, U. K.

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Deng, Q.

Dong, X.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

Drachev, V. P.

Du, C.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[CrossRef] [PubMed]

Economon, E. N.

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Falcone, F.

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Frimmer, M.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[CrossRef]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Fu, L. W.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Gao, H.

Garcia-Garcia, J.

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

Giessen, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Gil, I.

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

Gil, M.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: a review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[CrossRef]

Gu, J.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Guo, H. C.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Han, J.

He, M.

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Jang, W. H.

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

Kaiser, S.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Kildishev, A. V.

Koenderink, A. F.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
[CrossRef]

Koschny, T.

Lam, V. D.

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, Y. P.

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

Lin, X.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Lu, X.

Lu, Y.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

Luo, X.

Lv, Y.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Marques, R.

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

Martel, J.

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

Martin, F.

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martín, F.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: a review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Park, J. W.

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

Paul, O.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Rahm, M.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Sersic, I.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[CrossRef]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shi, H.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sorolla, M.

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

Soukoulis, C. M.

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tung, N. T.

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

Velazquez-Ahumada, M. D.

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

Verhagen, E.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, C.

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wei, X.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

Xing, Q.

Yao, H.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Yuan, H.-K.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, W.

Zhou, J.

Adv. Mater.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[CrossRef]

Appl. Phys. Lett.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120–093123 (2006).
[CrossRef]

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M. D. Velazquez-Ahumada, and J. Martel, “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2628–2635 (2006).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Korean Phys. Soc.

N. T. Tung, J. W. Park, Y. P. Lee, V. D. Lam, and W. H. Jang, “Detailed numerical study of cut-wire pair structures,” J. Korean Phys. Soc. 56(41), 1291–1297 (2010).
[CrossRef]

Metamaterials (Amst.)

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: a review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[CrossRef]

Nat. Mater.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103(21), 213902 (2009).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Science

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other

R. Marqués, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, 2008).

T. M. Floyd, Principles of Electric Circuits (Prentice Hall, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the coupled cut-wire pair structure. (a) Top view and (b) side view located at the dashed-dotted line marked in (a).

Fig. 2
Fig. 2

(a) Transmission spectra for the coupled cut-wire pairs and single cut-wire layer nanostructures. (b) Retrieved frequency dependent Real(μ) and Real(ε) for the coupled cut-wire pairs. The insert shows the retrieved frequency dependent Real(z).

Fig. 3
Fig. 3

Transmission spectra for (a) different Py values at a fixed P x = 300 nm, and (b) different Px values at a fixed P y = 120 nm, where other parameters are fixed as a = 160 nm, b = 40 nm, t m = 20 nm, and t d = 150 nm. Resonant frequency and 3 dB bandwidth of the coupled cut-wire pairs nanostructure as functions of (c) Py and (d) Px.

Fig. 4
Fig. 4

Resonant frequency and 3dB bandwidth of the single cut-wire layer nanostructure as functions of (a) Py and (b) Px. (c) and (d) The equivalent RLC circuits for magnetic and electric couplings. Insets in (a) and (b) are the resonant frequencies (RF) of the single cut-wire layer nanostructure as a function of central frequencies (CF) of the coupled cut-wire pair nanostructures at different Py and Px values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = 1 2 π L C ,
B W = f Q = R t o t a l L ,

Metrics