Abstract

Gd3+(29.5%)-Lu3+(29.0%)-Tm3+(1.5%) co-doped KY(WO4)2 layers were grown onto KY(WO4)2 substrates by liquid-phase epitaxy. Ridge-type channel waveguides with a thickness of 6.6 μm and a width of 7.5–12.5 μm were microstructured 1.5 μm deep by Ar+-beam milling and overgrown with pure KY(WO4)2 as a cladding layer. An upper limit of ~0.11 dB/cm for the waveguide propagation loss at the laser wavelength was determined. Laser experiments with butt-coupled dielectric mirrors demonstrated maximum output powers of 149 mW and 76 mW and slope efficiencies of 31.5% and 17.0% when pumping at 794 nm and 802 nm in TM and TE polarization, respectively. The lowest threshold was 7 mW. The laser wavelength was found to shift from 1930 nm via 1906 nm to 1846 nm for outcoupling efficiencies from 2% via 8% to 2 × 8%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
    [CrossRef] [PubMed]
  2. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40(24), 4395–4403 (2001).
    [CrossRef]
  3. B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
    [CrossRef]
  4. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42(12), 2119–2126 (2003).
    [CrossRef] [PubMed]
  5. J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
    [CrossRef]
  6. Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
    [CrossRef] [PubMed]
  7. G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
    [CrossRef]
  8. Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy,” Opt. Express 18(19), 20059–20071 (2010).
    [CrossRef] [PubMed]
  9. D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
    [CrossRef] [PubMed]
  10. A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
    [CrossRef]
  11. J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
    [CrossRef]
  12. E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
    [CrossRef]
  13. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Tm3+:germanate glass waveguide laser at 1.9 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, Washington DC, 2010), paper CTuU5.
  14. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
    [CrossRef]
  15. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
    [CrossRef] [PubMed]
  16. F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
    [CrossRef] [PubMed]
  17. D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
    [CrossRef]
  18. D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
    [CrossRef] [PubMed]
  19. S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
    [CrossRef] [PubMed]
  20. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
    [CrossRef]
  21. V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
    [CrossRef]
  22. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [CrossRef] [PubMed]
  23. R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
    [CrossRef]
  24. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
    [CrossRef] [PubMed]
  25. A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
    [CrossRef]
  26. J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
    [CrossRef]
  27. F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).

2010 (4)

2009 (3)

Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[CrossRef] [PubMed]

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[CrossRef]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

2007 (5)

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[CrossRef] [PubMed]

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[CrossRef] [PubMed]

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[CrossRef]

2005 (2)

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

2004 (2)

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).

2003 (1)

2001 (3)

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases,” Appl. Opt. 40(24), 4395–4403 (2001).
[CrossRef]

L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[CrossRef] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

1997 (1)

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

1996 (2)

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[CrossRef]

1994 (1)

Aguiló, M.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Aravazhi, S.

Beach, R. J.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

Bernhardi, E.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

Besson, J.-P.

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[CrossRef]

Bolaños, W.

Borca, C. N.

Borel, C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Brinck, D. J. B.

Cantelar, E.

Carvajal, J. J.

Chambaz, B.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Claps, R.

Cusso, F.

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Díaz, F.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937–26945 (2010).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Dunina, E. B.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

Englich, F. V.

Ferrand, B.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Gardillou, F.

Gavalda, J.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

Gavaldà, J.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Geskus, D.

Goodman, W.

L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[CrossRef] [PubMed]

Grieber, U.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

Griebner, U.

Grivas, C.

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[CrossRef] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

Güell, F.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).

Günther, D.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

Hametner, K.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

Hanna, D. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[CrossRef] [PubMed]

Hanson, R.

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[CrossRef]

Hanson, R. K.

Harkema, S.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

He, Y.

Jaque, D.

Jeffries, J.

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[CrossRef]

Jeffries, J. B.

Jiang, S.

Kakarantzas, G.

Kan, R.

Kisel, V. E.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

Kornienko, A. A.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

Kuleshov, N. V.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

Kuzmin, V. V.

J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[CrossRef]

Li, L.

Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[CrossRef] [PubMed]

Lifante, G.

Liu, W.

Mackenzie, J. I.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

Massons, J.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

Mateos, X.

Meissner, H. E.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

Mitchell, S. C.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

Murugan, G. S.

Narasimhan, L. R.

L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[CrossRef] [PubMed]

Nikolov, V.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Olthuis, W.

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Orr, B. J.

Patel, C. K. N.

Patel, N.

L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[CrossRef] [PubMed]

Pavlyuk, A. A.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

Peng, Y.

Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[CrossRef] [PubMed]

Pernas, P. L.

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Petrov, V.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[CrossRef] [PubMed]

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[CrossRef] [PubMed]

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

Pollnau, M.

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[CrossRef] [PubMed]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[CrossRef] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[CrossRef] [PubMed]

F. Gardillou, Y. E. Romanyuk, C. N. Borca, R.-P. Salathé, and M. Pollnau, “Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2).,” Opt. Lett. 32(5), 488–490 (2007).
[CrossRef] [PubMed]

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[CrossRef] [PubMed]

Pushkarsky, M.

Rameix, A.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Rieker, G.

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[CrossRef]

Rivier, S.

Rochat, E.

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[CrossRef]

Romanyuk, Y. E.

Ruiz, X.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Salathé, R.-P.

Salcedo, J. R.

J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[CrossRef]

Sanz-Garcia, J. A.

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Schilt, S.

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[CrossRef]

Shepherd, D. P.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[CrossRef] [PubMed]

Solans, X.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Sole, R. M.

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

Solé, R.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Sousa, J. M.

J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[CrossRef]

Subramanian, A. Z.

Thévenaz, L.

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[CrossRef]

Timmer, B.

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Tittel, F. K.

Townsend, P. D.

Tropper, A. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-µm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[CrossRef] [PubMed]

Troshin, A. E.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

van den Berg, A.

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Wang, J.

Warburton, T. J.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Webber, M. E.

Wilkinson, J. S.

Wörhoff, K.

Wu, J.

Yao, Z.

Yasukevich, A. S.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

Yu, Q.

Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[CrossRef] [PubMed]

Zhang, W.

Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[CrossRef] [PubMed]

Zong, J.

Appl. Opt. (2)

Appl. Phys. B (4)

J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85(2-3), 323–328 (2006).
[CrossRef]

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94(1), 51–63 (2009).
[CrossRef]

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[CrossRef]

J. R. Salcedo, J. M. Sousa, and V. V. Kuzmin, “Theoretical treatment of relaxation oscillations in quasi-three-level systems,” Appl. Phys. B 62(1), 83–85 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Electron. Lett. (1)

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguiló, F. Díaz, and U. Grieber, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[CrossRef]

J. Appl. Phys. (1)

F. Güell, Jna. Gavaldà, R. Solé, M. Aguiló, F. Díaz, M. Galan, and J. Massons, “1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals,” J. Appl. Phys. 95, 919–923 (2004).

J. Cryst. Growth (1)

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1‑xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169(3), 600–603 (1996).
[CrossRef]

Laser Phys. Lett. (1)

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[CrossRef]

Opt. Commun. (1)

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Narasimhan, W. Goodman, and N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4617–4621 (2001).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications – a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(4), 924–927 (2009).
[CrossRef] [PubMed]

Other (1)

F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Tm3+:germanate glass waveguide laser at 1.9 μm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, Washington DC, 2010), paper CTuU5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. The elements enclosed by the dashed line were only used with the double 8% outcoupling mirror configuration. The blue streak of luminescence visualizes the position of the channel waveguide.

Fig. 2
Fig. 2

Laser spectra for different outcoupling mirror configurations. a) HR & 2%, b) HR & 8%, and c) 2 × 8%.

Fig. 3
Fig. 3

Laser output power versus absorbed pump power for two different pump wavelengths and polarizations: a) pumped at 794 nm in TM polarization (E||N p); b) pumped at 802 nm in TE polarization (E||N m); c) zoom-in on the threshold region when pumped at 794 nm in TM polarization (E||N p).

Fig. 4
Fig. 4

Measured relaxation-oscillation frequency ω2 as a function of the quantity P/Pthr –1 for the laser with an outcoupling degree of 8% and linear fit providing the intrinsic roundtrip loss. The error bars represent the standard deviation given by the oscilloscope. The relaxation oscillations became first visible at a threshold pump power of 7 mW.

Fig. 5
Fig. 5

Measured mode profile and 1/e2 Gaussian fit of the laser output beam generated with the double 8% outcoupling mirror configuration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω 2 = γ c τ l ( P P t h r 1 ) ( 1 + N σ a l c γ c 1 n ) ,

Metrics