Abstract

The use of femtosecond-laser sources for the diagnostics of combustion and reacting-flow environments requires detailed knowledge of optical dispersive properties of the medium interacting with the laser beams. Here the second- and third-order dispersion values for nitrogen, oxygen, air, carbon dioxide, ethylene, acetylene, and propane within the 700–900 nm range are reported, along with the pressure dependence of the chromatic dispersion. The effect of dispersion on axial resolution when applied to nonlinear spectroscopy with ultrabroadband pulses is also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
    [CrossRef]
  2. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
    [CrossRef] [PubMed]
  3. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
    [CrossRef] [PubMed]
  4. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
    [CrossRef]
  5. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. (preprint), http://onlinelibrary.wiley.com/doi/10.1002/jrs.2709/abstract .
  6. S. Diddams and J. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13(6), 1120–1129 (1996).
    [CrossRef]
  7. R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007).
    [CrossRef]
  8. M. G. Welch, C. E. de Nobriga, R. A. Correa, W. J. Wadsworth, and J. C. Knight, “Accurate measurement of the dispersion of hollow-core fibers using a scalable technique,” Opt. Express 17(11), 9006–9012 (2009).
    [CrossRef] [PubMed]
  9. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37(24), 5679–5686 (1998).
    [CrossRef]
  10. T. D. Scarborough, C. Petersen, and C. J. G. J. Uiterwaal, “Measurements of the GVD of water and methanol and laser pulse characterization using direct imaging methods,” N. J. Phys. 10(10), 103011 (2008).
    [CrossRef]
  11. Y. Coello, V. Lozovoy, T. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
    [CrossRef]
  12. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt. 46(35), 8394–8401 (2007).
    [CrossRef] [PubMed]
  13. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5(8), 1563–1572 (1988).
    [CrossRef]
  14. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
    [CrossRef]
  15. J. Dymond, The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation (Clarendon and Oxford University Press, 1980).
  16. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [CrossRef] [PubMed]
  17. T. A. Pitts, T. S. Luk, J. K. Gruetzner, T. R. Nelson, A. McPherson, S. M. Cameron, and A. C. Bernstein, “Propagation of self-focusing laser pulses in atmosphere: experiment versus numerical simulation,” J. Opt. Soc. Am. B 21(11), 2008–2016 (2004).
    [CrossRef]
  18. I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14(19), 8885–8889 (2006).
    [CrossRef] [PubMed]
  19. K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
    [CrossRef]
  20. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16(8), 5499–5504 (2008).
    [CrossRef] [PubMed]
  21. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48(4), B17–B22 (2009).
    [CrossRef] [PubMed]

2010 (1)

2009 (4)

2008 (5)

2007 (3)

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007).
[CrossRef]

Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt. 46(35), 8394–8401 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
[CrossRef]

1998 (1)

1996 (1)

1988 (1)

Bernstein, A. C.

Borukhovich, I.

Börzsönyi, A.

Börzsönyi, Á.

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Cameron, S. M.

Chlebus, R.

R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007).
[CrossRef]

Ciprian, D.

R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007).
[CrossRef]

Clement, T. S.

Coello, Y.

Correa, R. A.

Dantus, M.

de Nobriga, C. E.

Diddams, S.

Diddams, S. A.

Diels, J.

Görbe, M.

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Gord, J.

S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

Gord, J. R.

Gruetzner, J. K.

Gunaratne, T.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Y. Coello, V. Lozovoy, T. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
[CrossRef]

Harris, D. A.

Heiner, Z.

Heritage, J. P.

Hlubina, P.

R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007).
[CrossRef]

Kalashnikov, M.

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Kalashnikov, M. P.

Kinnius, P.

S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

Kirschner, E. M.

Knight, J. C.

Kovács, A.

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Kovács, A. P.

Kulatilaka, W. D.

Kurdi, G.

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Li, H.

Lozovoy, V.

Lozovoy, V. V.

Lucht, R.

S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

Lucht, R. P.

Luk, T. S.

Martin, R. M.

McPherson, A.

Meyer, T. R.

Miller, J. D.

Miller, T. L.

Nelson, T. R.

Osvay, K.

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
[CrossRef] [PubMed]

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Pastirk, I.

Pestov, D.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Petersen, C.

T. D. Scarborough, C. Petersen, and C. J. G. J. Uiterwaal, “Measurements of the GVD of water and methanol and laser pulse characterization using direct imaging methods,” N. J. Phys. 10(10), 103011 (2008).
[CrossRef]

Pitts, T. A.

Richardson, D. R.

Roy, S.

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

Scarborough, T. D.

T. D. Scarborough, C. Petersen, and C. J. G. J. Uiterwaal, “Measurements of the GVD of water and methanol and laser pulse characterization using direct imaging methods,” N. J. Phys. 10(10), 103011 (2008).
[CrossRef]

Slipchenko, M. N.

Stauffer, H. U.

Tseng, C.

Uiterwaal, C. J. G. J.

T. D. Scarborough, C. Petersen, and C. J. G. J. Uiterwaal, “Measurements of the GVD of water and methanol and laser pulse characterization using direct imaging methods,” N. J. Phys. 10(10), 103011 (2008).
[CrossRef]

Van Engen, A. G.

Wadsworth, W. J.

Weinacht, T.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5(8), 1563–1572 (1988).
[CrossRef]

Welch, M. G.

Wrzesinski, P.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Wrzesinski, P. J.

Xu, B.

Zhu, X.

Appl. Opt. (4)

Appl. Phys. B (1)

K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

J. Opt. Soc. Am. B (4)

N. J. Phys. (1)

T. D. Scarborough, C. Petersen, and C. J. G. J. Uiterwaal, “Measurements of the GVD of water and methanol and laser pulse characterization using direct imaging methods,” N. J. Phys. 10(10), 103011 (2008).
[CrossRef]

Opt. Commun. (1)

S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opto-Electron. Rev. (1)

R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000).
[CrossRef]

Other (2)

J. Dymond, The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation (Clarendon and Oxford University Press, 1980).

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. (preprint), http://onlinelibrary.wiley.com/doi/10.1002/jrs.2709/abstract .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Broadband spectrum produced by the Venteon oscillator; (b) Diagram of experimental setup.

Fig. 2
Fig. 2

Measured GVD at 800 nm as a function of pressure in (a) low (1–4 bar)- and (b) high (1–50 bar)-pressure regimes for several atmospheric and combustion-related gases.

Fig. 3
Fig. 3

Measured GVD at 800 nm as a function of gas density for nitrogen, oxygen, carbon dioxide, and ethylene along with linear fitting of the data.

Fig. 4
Fig. 4

(a) Measured dispersion for nitrogen (raw data) over the entire pressure range (data for some pressure values have been eliminated for clarity of presentation); (b) Dispersion of nitrogen normalized on path length and pressure, along with the linear fit. The intercept value provides the second-order coefficient, while the slope provides the third-order dispersion. The carrier frequency, ω 0, is set to 2.3526 rad/fs (λ 0 = 800.65 nm).

Fig. 5
Fig. 5

Dispersion normalized on the path length and pressure for all the gases, along with the linear fit. For oxygen, nitrogen, and air, dispersion data from both pressure ranges are used; for all other gases only the low-pressure data, exhibiting linear pressure dependence, are used.

Fig. 6
Fig. 6

Simulated Raman scattering efficiency at 1285 cm−1 as a function of propagation distance CO2 with a density of 2.24 mol·L−1.The inset figure is a schematic example of how this improved spatial resolution can be used to select a region of interest to acquire data in a combustion process.

Tables (2)

Tables Icon

Table 1 Second- and Third-Order Dispersion Values at 800 nm for Each Gas at a Pressure of 1 Bar, along with the Standard Error in Fitting and the Statistics of the Linear Fit

Tables Icon

Table 2 Simulated Pulse Durations (fs) Due to Changes in Dispersion as a Function of Pressure for a 0.15-m Path

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G V D ( ω ) d d ω ( 1 V g ( ω ) ) = d 2 k ( ω ) d ω 2 k ( ω ) ,
G V D = Δ ( ϕ ( ω ) ) L = ϕ gas ( ω ) ϕ vac ( ω ) L ,
G V D ( ω ) k ( ω ) = k ( ω 0 ) + k ( ω 0 ) ( ω ω 0 ) +
P = ρ R T [ 1 + β ρ ]

Metrics