Abstract

Phase unwrapping techniques remove the modulus ambiguities of wrapped phase maps. The present work shows a first-order feedback system for phase unwrapping and smoothing. This system is a fast sequential unwrapping system which also allows filtering some noise because in deed it is an Infinite Impulse Response (IIR) low-pass filter. In other words, our system is capable of low-pass filtering the wrapped phase as the unwrapping process proceeds. We demonstrate the temporal stability of this unwrapping feedback system, as well as its low-pass filtering capabilities. Our system even outperforms the most common and used unwrapping methods that we tested, such as the Flynn’s method, the Goldstain’s method, and the Ghiglia least-squares method (weighted or unweighted). The comparisons with these methods shows that our system filters-out some noise while preserving the dynamic range of the phase-data. Its application areas may cover: optical metrology, synthetic aperture radar systems, magnetic resonance, and those imaging systems where information is obtained as a demodulated wrapped phase map.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156 (1982).
    [CrossRef]
  2. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693 (1974).
    [CrossRef]
  3. Q. Kemao, “Two-dimensional windowed fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
    [CrossRef]
  4. M. Servin, J. C. Estrada, and J. A. Quiroga, “The general theory of phase shifting algorithms,” Opt. Express 17, 21867–21881 (2009).
    [CrossRef]
  5. L. N. Mertz, “Speckle imaging, photon by photon,” Appl. Opt. 18, 611–614 (1979).
    [CrossRef]
  6. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979).
    [CrossRef]
  7. K. A. Stetson, J. Wahid, and P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36, 4830–4838 (1997).
    [CrossRef]
  8. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21, 2470 (1982).
    [CrossRef]
  9. T. R. Judge, and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21, 199–239 (1994).
    [CrossRef]
  10. D. C. Ghiglia, and M. D. Pritt, Two-dimensional Phase Unwrapping; Theory, Algoritms, and Software (Wiley-Interscience, 1998).
  11. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987).
    [CrossRef]
  12. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989).
    [CrossRef]
  13. D. C. Ghiglia, and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [CrossRef]
  14. J. L. Marroquin, and M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995).
    [CrossRef]
  15. J. L. Marroquin, M. Tapia, R. Rodriguez-Vera, and M. Servin, “Parallel algorithms for phase unwrapping based on markov random field models,” J. Opt. Soc. Am. A 12, 2578–2585 (1995).
    [CrossRef]
  16. K. M. Hung, and T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
    [CrossRef]
  17. V. V. Volkov, and Y. Zhu, “Deterministic phase unwrapping in the presence of noise,” Opt. Lett. 28, 2156–2158 (2003).
    [CrossRef]
  18. M. Servin, F. J. Cuevas, D. Malacara, J. L. Marroquin, and R. Rodriguez-Vera, “Phase unwrapping through demodulation by use of the regularized phase-tracking technique,” Appl. Opt. 38, 1934–1941 (1999).
    [CrossRef]
  19. . J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Principles, Algorothims, ans Applications (Prentice-Hall, October 5, 1995), 3rd ed.

2009

2007

Q. Kemao, “Two-dimensional windowed fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

2003

1999

1998

K. M. Hung, and T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

1997

1995

1994

D. C. Ghiglia, and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
[CrossRef]

T. R. Judge, and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21, 199–239 (1994).
[CrossRef]

1989

1987

1982

1979

1974

Brangaccio, D. J.

Bruning, J. H.

Bryanston-Cross, P. J.

T. R. Judge, and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21, 199–239 (1994).
[CrossRef]

Cuevas, F. J.

Estrada, J. C.

Gallagher, J. E.

Gauthier, P.

Ghiglia, D. C.

Herriott, D. R.

Hung, K. M.

K. M. Hung, and T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Hunt, B. R.

Huntley, J. M.

Ina, H.

Itoh, K.

Judge, T. R.

T. R. Judge, and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21, 199–239 (1994).
[CrossRef]

Kemao, Q.

Q. Kemao, “Two-dimensional windowed fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

Kobayashi, S.

Malacara, D.

Marroquin, J. L.

Mastin, G. A.

Mertz, L. N.

Quiroga, J. A.

Rivera, M.

Rodriguez-Vera, R.

Romero, L. A.

Rosenfeld, D. P.

Servin, M.

Stetson, K. A.

Takeda, M.

Tapia, M.

Volkov, V. V.

Wahid, J.

White, A. D.

Yamada, T.

K. M. Hung, and T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Zhu, Y.

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

K. M. Hung, and T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965–2970 (1998).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

Q. Kemao, “Two-dimensional windowed fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

T. R. Judge, and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng. 21, 199–239 (1994).
[CrossRef]

Opt. Lett.

Other

D. C. Ghiglia, and M. D. Pritt, Two-dimensional Phase Unwrapping; Theory, Algoritms, and Software (Wiley-Interscience, 1998).

. J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Principles, Algorothims, ans Applications (Prentice-Hall, October 5, 1995), 3rd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics