Abstract

The dielectric properties of 1050 °C/12h sintered CaCu3Ti4O12 (CCTO) ceramics have been investigated by using terahertz time domain spectroscopy in the frequency range of 0.2-1.6 THz at room temperature. When applying an external optical field, an obvious variation of dielectric constant was observed and reached up to 7%. However, the dielectric loss does not change appreciably. From the results, we found the change of refractive index has a linear relationship on scale with the applied light intensity. These findings were attributed to the change of spontaneous polarization in the ceramic caused by the excited free carriers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
    [CrossRef]
  2. Y. Liu, R. L. Withers, and X. Y. Wei, “Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12,” Phys. Rev. B 72(13), 134104 (2005).
    [CrossRef]
  3. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
    [CrossRef] [PubMed]
  4. S. Ke, H. Huang, and H. Fan, “Relaxor behavior in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 89(18), 182904 (2006).
    [CrossRef]
  5. Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
    [CrossRef] [PubMed]
  6. L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
    [CrossRef]
  7. D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
    [CrossRef]
  8. T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. (Deerfield Beach Fla.) 14(18), 1321–1323 (2002).
    [CrossRef]
  9. A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
    [CrossRef]
  10. L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
    [CrossRef]
  11. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [CrossRef]
  12. K. M. Johnson, “Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices,” J. Appl. Phys. 33(9), 2826–2831 (1962).
    [CrossRef]
  13. Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
    [CrossRef]
  14. W. D. Johnston, “Optical index damage in LiNbO3 and other pyroelectric insulators,” J. Appl. Phys. 41(8), 3279–3285 (1970).
    [CrossRef]
  15. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
    [CrossRef]
  16. L. Zhang and Z. J. Tang, “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B 70(17), 174306 (2004).
    [CrossRef]
  17. B. Shri Prakash and K. B. R. Varma, “Ferroelectriclike and pyroelectric behavior of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 90(8), 082903 (2007).
    [CrossRef]

2008

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

2007

B. Shri Prakash and K. B. R. Varma, “Ferroelectriclike and pyroelectric behavior of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 90(8), 082903 (2007).
[CrossRef]

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

2006

S. Ke, H. Huang, and H. Fan, “Relaxor behavior in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 89(18), 182904 (2006).
[CrossRef]

2005

Y. Liu, R. L. Withers, and X. Y. Wei, “Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12,” Phys. Rev. B 72(13), 134104 (2005).
[CrossRef]

2004

A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
[CrossRef]

L. Zhang and Z. J. Tang, “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B 70(17), 174306 (2004).
[CrossRef]

2002

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
[CrossRef]

T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. (Deerfield Beach Fla.) 14(18), 1321–1323 (2002).
[CrossRef]

2001

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

2000

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
[CrossRef]

1996

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

1970

W. D. Johnston, “Optical index damage in LiNbO3 and other pyroelectric insulators,” J. Appl. Phys. 41(8), 3279–3285 (1970).
[CrossRef]

1969

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[CrossRef]

1962

K. M. Johnson, “Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices,” J. Appl. Phys. 33(9), 2826–2831 (1962).
[CrossRef]

Adams, T. B.

A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
[CrossRef]

D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
[CrossRef]

T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. (Deerfield Beach Fla.) 14(18), 1321–1323 (2002).
[CrossRef]

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[CrossRef]

Chen, Y. C.

Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
[CrossRef]

Chou, Y. P.

Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
[CrossRef]

Cohen, M. H.

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

Dong, L.

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Duan, N.

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Fan, H.

S. Ke, H. Huang, and H. Fan, “Relaxor behavior in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 89(18), 182904 (2006).
[CrossRef]

Fang, L.

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

Frenkel, A. I.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Hanson, J.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

He, L. X.

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Homes, C.

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

Homes, C. C.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

Huang, H.

S. Ke, H. Huang, and H. Fan, “Relaxor behavior in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 89(18), 182904 (2006).
[CrossRef]

Johnson, K. M.

K. M. Johnson, “Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices,” J. Appl. Phys. 33(9), 2826–2831 (1962).
[CrossRef]

Johnston, W. D.

W. D. Johnston, “Optical index damage in LiNbO3 and other pyroelectric insulators,” J. Appl. Phys. 41(8), 3279–3285 (1970).
[CrossRef]

Ke, S.

S. Ke, H. Huang, and H. Fan, “Relaxor behavior in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 89(18), 182904 (2006).
[CrossRef]

Ku, W.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Li, Z.

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

Liu, Y.

Y. Liu, R. L. Withers, and X. Y. Wei, “Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12,” Phys. Rev. B 72(13), 134104 (2005).
[CrossRef]

Morrison, F. D.

A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
[CrossRef]

D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Neaton, J. B.

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

Northrup, P.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Ramirez, A. P.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

Reisner, B. A.

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Shapiro, S. M.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

Shen, M.

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

Shri Prakash, B.

B. Shri Prakash and K. B. R. Varma, “Ferroelectriclike and pyroelectric behavior of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 90(8), 082903 (2007).
[CrossRef]

Sinclair, D. C.

A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
[CrossRef]

T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. (Deerfield Beach Fla.) 14(18), 1321–1323 (2002).
[CrossRef]

D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
[CrossRef]

Sleight, A. W.

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Subramanian, M. A.

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Tang, Z. J.

L. Zhang and Z. J. Tang, “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B 70(17), 174306 (2004).
[CrossRef]

Tsai, Y. T.

Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
[CrossRef]

Vanderbilt, D.

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

Varma, K. B. R.

B. Shri Prakash and K. B. R. Varma, “Ferroelectriclike and pyroelectric behavior of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 90(8), 082903 (2007).
[CrossRef]

Vogt, T.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

Wakimoto, S.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

Wei, X. Y.

Y. Liu, R. L. Withers, and X. Y. Wei, “Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12,” Phys. Rev. B 72(13), 134104 (2005).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

West, A. R.

A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
[CrossRef]

T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. (Deerfield Beach Fla.) 14(18), 1321–1323 (2002).
[CrossRef]

D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
[CrossRef]

Withers, R. L.

Y. Liu, R. L. Withers, and X. Y. Wei, “Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12,” Phys. Rev. B 72(13), 134104 (2005).
[CrossRef]

Wu, L.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
[CrossRef]

Yang, J.

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

Zhang, L.

L. Zhang and Z. J. Tang, “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B 70(17), 174306 (2004).
[CrossRef]

Zheng, F.

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

Zheng, J. C.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. (Deerfield Beach Fla.) 14(18), 1321–1323 (2002).
[CrossRef]

Appl. Phys. Lett.

D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80(12), 2153–2155 (2002).
[CrossRef]

S. Ke, H. Huang, and H. Fan, “Relaxor behavior in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 89(18), 182904 (2006).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

B. Shri Prakash and K. B. R. Varma, “Ferroelectriclike and pyroelectric behavior of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 90(8), 082903 (2007).
[CrossRef]

J. Appl. Phys.

L. Fang, M. Shen, F. Zheng, Z. Li, and J. Yang, “Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics,” J. Appl. Phys. 104(6), 064110 (2008).
[CrossRef]

K. M. Johnson, “Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices,” J. Appl. Phys. 33(9), 2826–2831 (1962).
[CrossRef]

W. D. Johnston, “Optical index damage in LiNbO3 and other pyroelectric insulators,” J. Appl. Phys. 41(8), 3279–3285 (1970).
[CrossRef]

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[CrossRef]

J. Eur. Ceram. Soc.

A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004).
[CrossRef]

J. Solid State Chem.

M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151(2), 323–325 (2000).
[CrossRef]

Mater. Sci. Eng. B

Y. C. Chen, L. Wu, Y. P. Chou, and Y. T. Tsai, “Curve-fitting of direct-current field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate,” Mater. Sci. Eng. B 76(2), 95–100 (2000).
[CrossRef]

Phys. Rev. B

L. Zhang and Z. J. Tang, “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B 70(17), 174306 (2004).
[CrossRef]

Y. Liu, R. L. Withers, and X. Y. Wei, “Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12,” Phys. Rev. B 72(13), 134104 (2005).
[CrossRef]

L. X. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B 65(21), 214112 (2002).
[CrossRef]

Phys. Rev. Lett.

Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, “Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response,” Phys. Rev. Lett. 99(3), 037602 (2007).
[CrossRef] [PubMed]

Science

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectric-constant perovskite-related oxide,” Science 293(5530), 673–676 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The installation diagram of TDS. A green laser was obliquely incident upon the surface of the sample at an angle of 45° with the polar axis.

Fig. 2
Fig. 2

(a) Time domain transmission waveform of CCTO ceramics and (b) its time shift under different external optical fields at room temperature.

Fig. 3
Fig. 3

Transmission spectra of CCTO ceramics under different external optical fields at room temperature.

Fig. 4
Fig. 4

Frequency dependence of (a) real part and (b) imaginary part of complex dielectric constant of CCTO ceramics with different external optical fields at room temperature.

Fig. 5
Fig. 5

Light intensity dependence of dielectric constant of CCTO at (a) 0.8 THz and (b) 1.0 THz of CCTO. The data points are our measured values, and the solid lines are the fit by using Eq. (1).

Fig. 6
Fig. 6

Light intensity dependence of variation of refractive index at (a) 0.8 THz and (b) 1.0 THz of CCTO. The data points are our measured values, and the solid lines are the fit by using Eq. (2).

Metrics