Abstract

Radially polarized beams with an output power of 275 W, M2 = 2.3 and an efficiency of about 52.5% were generated from an Yb:YAG thin-disk laser. An intra-cavity circular resonant waveguide grating was used as a polarization selective mirror inside the laser cavity. We report on the design and the fabrication using a scanning beam interference lithography system and discuss the calculated and measured performances of the presented polarizing grating mirrors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
    [CrossRef] [PubMed]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  4. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [CrossRef] [PubMed]
  5. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [CrossRef]
  6. M. Abdou Ahmed, A. Voss, M. M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-powers lasers,” XVII International Sympo-sium on Gas Flow, Chemical Lasers, and High-Power Lasers, Proceedings of the SPIE 7131, pp. 71311I–71311I–10, Lissabon, Portugal (2008).
  7. M. von Bostel, “Wavelength specific advantages of CO2 laser,” Stuttgart Laser Technology Forum (SLT’10), Stuttgart (Germany), 2010.
  8. R. Weber, M. Abdou Ahmed, A. Michalowski, P. Berger, P. Gärtner, V. Onuseit, M. Kraus, and A. Voß, Th. Graf “Radial and tangential polarization in laser cutting, welding and drilling” invited talk, 18th International Conference on Advanced Laser Technologies (ALT’ 10), Egmond am Zee, Holland, 2010.
  9. T. Moser, M. Abdou Ahmed, M. Schäfer, M. M. Vogel, A. Voss, and Th. Graf, “Exploiting radial polarization in material processing”,Stuttgart Laser Technology Forum (STL’08), Stuttgart, Germany, 2008.
  10. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azi-muthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [CrossRef]
  11. M. Martin Kraus, “Abdou Ahmed, Andreas Michalowski, Andreas Voss, Rudolf Weber, and Thomas Graf, “Microdrilling in Steel using Ultrashort Pulsed Laser Beams with Radial and Azimuthal Polarization,” Opt. Express 18(21), 2305–22313 (2010).
  12. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
    [CrossRef] [PubMed]
  13. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45(33), 8517–8522 (2006).
    [CrossRef] [PubMed]
  14. J. L. Li, K. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2,” Opt. Express 16(14), 10841–10848 (2008).
    [CrossRef] [PubMed]
  15. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
    [CrossRef]
  16. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]
  17. P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High Power Radial Polarization Conversion Using Photonic Crystal Segmented Half-Wave-Plate,” Conference on Lasers and Electro-Optics (CLEO) 2008 paper: CMO4.
  18. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  19. M. Abdou-Ahmed, M. M. Vogel, A. Voss, and Th. Graf, “A 1-kW radially polarized thin-disk laser,” CLEO Europe 2009, Munich (2009), Germany.
  20. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [CrossRef] [PubMed]
  21. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
    [CrossRef] [PubMed]
  22. O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling grating as waveguide functional elements,” Pure Appl. Opt. 5(4), 453–469 (1996).
    [CrossRef]
  23. A. Voss, M. A. Ahmed, and T. Graf, “Extension of the Jones matrix formalism to higher-order transverse modes,” Opt. Lett. 32(1), 83–85 (2007).
    [CrossRef]
  24. A. Voss, M. Abdou-Ahmed, and Th. Graf, “Application of the extended Jones matrix formalism for higher-order transverse modes to laser resonators,” Opt. Express 18(21), 21540–21550 (2010).
    [CrossRef] [PubMed]
  25. L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
    [CrossRef]
  26. A. V. Tishchenko and M. Lyndin, “Diffraction from a stratified periodical medium by the true modal method,” Diffractive Optics, 3–7 September 2005, Warsow, Poland.
  27. T. Clausnitzer, E. B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, and A. Duparré, “Ultra low-loss low-efficiency diffraction gratings,” Opt. Express 13(12), 4370–4378 (2005).
    [CrossRef] [PubMed]
  28. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
    [CrossRef]
  29. M. A. Ahmed and T. Graf, “Double-resonance grating mirror for polarization con-trol in solid-state lasers,” Laser Phys. Lett. 3(4), 178–180 (2006).
    [CrossRef]
  30. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
    [CrossRef]
  31. H. Heidelberg Instruments Gmb, “Factsheet DWL66FS”; http://www.himt.de/en/downloads ; 2010.
  32. M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
    [CrossRef]
  33. N. Destouches, J.-C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
    [CrossRef] [PubMed]
  34. R. M. A. Azzam, “NIRSE: Normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
    [CrossRef]
  35. A.-K. Chu, C. J. Lin, and W. H. Cheng, “Multilayer dielectric materials of SiOx/Ta2O5/SiO2 for temperature stable diode lasers,” Mater. Chem. Phys. 42(3), 214–216 (1995).
    [CrossRef]
  36. Th. Liebig, M. Abdou Ahmed, A. Voss, and T. Graf, “Novel multi-sensor polarimeter for the characterization of inhomogeneously polarized laser beams,” LASE, Photonics West 2010, San Francisco, California, 2010.

2010 (2)

M. Martin Kraus, “Abdou Ahmed, Andreas Michalowski, Andreas Voss, Rudolf Weber, and Thomas Graf, “Microdrilling in Steel using Ultrashort Pulsed Laser Beams with Radial and Azimuthal Polarization,” Opt. Express 18(21), 2305–22313 (2010).

A. Voss, M. Abdou-Ahmed, and Th. Graf, “Application of the extended Jones matrix formalism for higher-order transverse modes to laser resonators,” Opt. Express 18(21), 21540–21550 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

2007 (6)

2006 (3)

2005 (2)

T. Clausnitzer, E. B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, and A. Duparré, “Ultra low-loss low-efficiency diffraction gratings,” Opt. Express 13(12), 4370–4378 (2005).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

1999 (2)

1996 (1)

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling grating as waveguide functional elements,” Pure Appl. Opt. 5(4), 453–469 (1996).
[CrossRef]

1995 (2)

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

A.-K. Chu, C. J. Lin, and W. H. Cheng, “Multilayer dielectric materials of SiOx/Ta2O5/SiO2 for temperature stable diode lasers,” Mater. Chem. Phys. 42(3), 214–216 (1995).
[CrossRef]

1981 (1)

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

1977 (1)

R. M. A. Azzam, “NIRSE: Normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
[CrossRef]

Abdou-Ahmed, M.

Adams, J. L.

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

Ahmed, M. A.

Andrewartha, J. R.

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, “NIRSE: Normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
[CrossRef]

Baets, R.

Balmer, J.

Boten, L. C.

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

Bunkowski, A.

Burmeister, O.

Chen, C. G.

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

Cheng, W. H.

A.-K. Chu, C. J. Lin, and W. H. Cheng, “Multilayer dielectric materials of SiOx/Ta2O5/SiO2 for temperature stable diode lasers,” Mater. Chem. Phys. 42(3), 214–216 (1995).
[CrossRef]

Cherkashin, V. V.

Chu, A.-K.

A.-K. Chu, C. J. Lin, and W. H. Cheng, “Multilayer dielectric materials of SiOx/Ta2O5/SiO2 for temperature stable diode lasers,” Mater. Chem. Phys. 42(3), 214–216 (1995).
[CrossRef]

Churin, E. G.

Clausnitzer, T.

Danzmann, K.

Delbeke, D.

Destouches, N.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Duparré, A.

Endo, M.

Fernow, R. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azi-muthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Gliech, S.

Glur, H.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Graf, T.

Graf, Th.

Graig, M. S.

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

Heckenberg, N. R.

Heimann, R. K.

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

Jackel, S.

Kharissov, A. A.

Kim, G. H.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Kimura, W. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Kiryanov, A. V.

Kiryanov, V. P.

Kley, E. B.

Kokarev, S. A.

Konkola, P. T.

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

Korolkov, V. P.

Koronkevich, V. P.

Kristensen, P.

Kusche, K. P.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Leibush, E.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Li, J. L.

Lin, C. J.

A.-K. Chu, C. J. Lin, and W. H. Cheng, “Multilayer dielectric materials of SiOx/Ta2O5/SiO2 for temperature stable diode lasers,” Mater. Chem. Phys. 42(3), 214–216 (1995).
[CrossRef]

Liu, Y.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Lumer, Y.

Lyndin, N.

Machavariani, G.

Martin Kraus, M.

M. Martin Kraus, “Abdou Ahmed, Andreas Michalowski, Andreas Voss, Rudolf Weber, and Thomas Graf, “Microdrilling in Steel using Ultrashort Pulsed Laser Beams with Radial and Azimuthal Polarization,” Opt. Express 18(21), 2305–22313 (2010).

Mcphedran, R. C.

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azi-muthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Meir, A.

Moser, T.

T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45(33), 8517–8522 (2006).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Moshe, I.

Musha, M.

Muys, P.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Nieminen, T. A.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Parriaux, O.

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[CrossRef] [PubMed]

N. Destouches, J.-C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling grating as waveguide functional elements,” Pure Appl. Opt. 5(4), 453–469 (1996).
[CrossRef]

Pati, G. S.

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

Pigeon, F.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Pogorelsky, I. V.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Poleshchuk, A. G.

Pommier, J.-C.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Ramachandran, S.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azi-muthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Romea, R. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

Sato, T.

Schattenburg, M. L.

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

Schnabel, R.

Schulz, J.

Shirakawa, A.

Steinhauer, L. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Sychugov, V. A.

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling grating as waveguide functional elements,” Pure Appl. Opt. 5(4), 453–469 (1996).
[CrossRef]

Tishchenko, A. V.

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling grating as waveguide functional elements,” Pure Appl. Opt. 5(4), 453–469 (1996).
[CrossRef]

Tonchev, S.

Tünnermann, A.

Ueda, K.

Verhoglyad, A. G.

Verstuyft, S.

Vogel, M. M.

Voss, A.

Wang, X.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Yan, M. F.

Zhan, Q.

Zhong, L. X.

Appl. Opt. (2)

Appl. Phys. B (1)

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirror used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azi-muthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Laser Phys. Lett. (1)

M. A. Ahmed and T. Graf, “Double-resonance grating mirror for polarization con-trol in solid-state lasers,” Laser Phys. Lett. 3(4), 178–180 (2006).
[CrossRef]

Mater. Chem. Phys. (1)

A.-K. Chu, C. J. Lin, and W. H. Cheng, “Multilayer dielectric materials of SiOx/Ta2O5/SiO2 for temperature stable diode lasers,” Mater. Chem. Phys. 42(3), 214–216 (1995).
[CrossRef]

Opt. Acta (Lond.) (1)

L. C. Boten, M. S. Graig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta (Lond.) 28, 413 (1981).
[CrossRef]

Opt. Commun. (1)

R. M. A. Azzam, “NIRSE: Normal-incidence rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
[CrossRef]

Opt. Express (6)

Opt. Lett. (8)

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[CrossRef] [PubMed]

M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
[CrossRef] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[CrossRef] [PubMed]

A. Voss, M. A. Ahmed, and T. Graf, “Extension of the Jones matrix formalism to higher-order transverse modes,” Opt. Lett. 32(1), 83–85 (2007).
[CrossRef]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[CrossRef] [PubMed]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. L. Schattenburg, C. G. Chen, R. K. Heimann, P. T. Konkola, and G. S. Pati, “Progress towards a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

Pure Appl. Opt. (1)

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, “Coupling grating as waveguide functional elements,” Pure Appl. Opt. 5(4), 453–469 (1996).
[CrossRef]

Other (9)

A. V. Tishchenko and M. Lyndin, “Diffraction from a stratified periodical medium by the true modal method,” Diffractive Optics, 3–7 September 2005, Warsow, Poland.

H. Heidelberg Instruments Gmb, “Factsheet DWL66FS”; http://www.himt.de/en/downloads ; 2010.

Th. Liebig, M. Abdou Ahmed, A. Voss, and T. Graf, “Novel multi-sensor polarimeter for the characterization of inhomogeneously polarized laser beams,” LASE, Photonics West 2010, San Francisco, California, 2010.

M. Abdou Ahmed, A. Voss, M. M. Vogel, A. Austerschulte, J. Schulz, V. Metsch, T. Moser, and T. Graf, “Radially polarized high-powers lasers,” XVII International Sympo-sium on Gas Flow, Chemical Lasers, and High-Power Lasers, Proceedings of the SPIE 7131, pp. 71311I–71311I–10, Lissabon, Portugal (2008).

M. von Bostel, “Wavelength specific advantages of CO2 laser,” Stuttgart Laser Technology Forum (SLT’10), Stuttgart (Germany), 2010.

R. Weber, M. Abdou Ahmed, A. Michalowski, P. Berger, P. Gärtner, V. Onuseit, M. Kraus, and A. Voß, Th. Graf “Radial and tangential polarization in laser cutting, welding and drilling” invited talk, 18th International Conference on Advanced Laser Technologies (ALT’ 10), Egmond am Zee, Holland, 2010.

T. Moser, M. Abdou Ahmed, M. Schäfer, M. M. Vogel, A. Voss, and Th. Graf, “Exploiting radial polarization in material processing”,Stuttgart Laser Technology Forum (STL’08), Stuttgart, Germany, 2008.

M. Abdou-Ahmed, M. M. Vogel, A. Voss, and Th. Graf, “A 1-kW radially polarized thin-disk laser,” CLEO Europe 2009, Munich (2009), Germany.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High Power Radial Polarization Conversion Using Photonic Crystal Segmented Half-Wave-Plate,” Conference on Lasers and Electro-Optics (CLEO) 2008 paper: CMO4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

a) Leaky-mode based polarizing mechanism and b) calculated TE and TM reflection coefficient in the case of TE-polarization filtering.

Fig. 2
Fig. 2

TE and TM 2D-field-distributions in a standard multilayer in association with a sub-wavelength grating.

Fig. 3
Fig. 3

Cross-section of the a) top-etched and b) multiple-corrugated structures. H and L demote High and Low index respectively.

Fig. 4
Fig. 4

Comparison of the calculated reflection coefficients for the top-etched and multiple-corrugated structures. a) top-etched and multiple-corrugated structures with 40 nm and 10 nm grating depth respectively; b) top-etched and multiple-corrugated structures with 50 nm and 25 nm grating depth respectively.

Fig. 5
Fig. 5

Calculated TE and TM reflections coefficients for C0, C1 and C2 structures described in the text.

Fig. 6
Fig. 6

Illustration of the pattern stitching process.

Fig. 7
Fig. 7

a) photograph and b) 3D AFM scan (central are) of a circular grating mirror.

Fig. 8
Fig. 8

SEM cross-section picture of a multiple-corrugated polarizing grating mirror.

Fig. 9
Fig. 9

Spectroscopic characterization setup built according to DIN EN ISO 13697 with a slight modification for its use under normal incidence.

Fig. 10
Fig. 10

Measured and calculated reflection coefficients for a grating with a period of 930 nm and a nominal groove depth of 15 nm combined with a standard 29 quarter-wave layer dielectric mirror

Fig. 12
Fig. 12

Schematic of the thin-disk laser resonator described in the text.

Fig. 11
Fig. 11

Temperature dependence of the spectral response of the multiple-corrugated polarizing grat-ing mirror. The inset shows the wavelength dip position versus the temperature.

Fig. 13
Fig. 13

a) Comparison of laser efficiency between a circular grating mirror and a standard HR mir-ror; b) Measured intensity distribution of the 275 W radially polarized thin-disk laser beam without (top left) and with a linear polarizer at different orientations; c) Measured polarization distribution over the beam cross-section.

Tables (1)

Tables Icon

Table 1 Calculated reflection coefficients and spectral bandwidth of the two developed polarizing leaky mode mirrors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e f f = sin ( θ ) ± m λ Λ ,

Metrics