Abstract

A 22× reduction in laser pump threshold and a 23× enhancement in energy conversion have been demonstrated on a second order distributed feedback (DFB) laser using a resonant optical pumping (ROP) technique. The ROP scheme couples the excitation light into a distinct resonant mode of the laser cavity through the illuminating at a specific resonant incident angle. Coupling excitation light into the resonant mode results in an enhanced near-field, which significantly increases pump absorption by the active medium. Consequently, high power conversion efficiency between pumping light and lasing emission is achieved and laser pump threshold power is reduced.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
    [CrossRef]
  2. F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
    [CrossRef] [PubMed]
  3. C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
    [CrossRef]
  4. N. Tsutsumi and M. Yamamoto, “Threshold reduction of a tunable organic laser using effective energy transfer,” J. Opt. Soc. Am. B 23(5), 842–845 (2006).
    [CrossRef]
  5. B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
    [CrossRef] [PubMed]
  6. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
    [CrossRef]
  7. R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
    [CrossRef]
  8. M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
    [CrossRef]
  9. M. J. Bohn and J. G. McInerney, “Resonant optical pumping of vertical-cavity surface-emitting lasers,” Opt. Commun. 117(1-2), 111–115 (1995).
    [CrossRef]
  10. F. De Martini and G. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
    [CrossRef] [PubMed]
  11. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [CrossRef]
  12. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
    [CrossRef] [PubMed]
  13. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995).
    [CrossRef] [PubMed]
  14. F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
    [CrossRef]
  15. C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
    [CrossRef]
  16. M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
    [CrossRef]
  17. C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
    [CrossRef]
  18. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
    [CrossRef] [PubMed]
  19. B. Park and M. Y. Han, “Organic light-emitting devices fabricated using a premetered coating process,” Opt. Express 17(24), 21362–21369 (2009).
    [CrossRef] [PubMed]
  20. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
    [CrossRef]
  21. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [CrossRef]
  22. E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. 18(1), 66–71 (1982).
    [CrossRef]

2010 (2)

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[CrossRef]

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[CrossRef] [PubMed]

2009 (3)

B. Park and M. Y. Han, “Organic light-emitting devices fabricated using a premetered coating process,” Opt. Express 17(24), 21362–21369 (2009).
[CrossRef] [PubMed]

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

2008 (2)

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

2006 (2)

N. Tsutsumi and M. Yamamoto, “Threshold reduction of a tunable organic laser using effective energy transfer,” J. Opt. Soc. Am. B 23(5), 842–845 (2006).
[CrossRef]

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

2005 (2)

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

2004 (1)

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

1995 (2)

1988 (1)

F. De Martini and G. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

1987 (1)

F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[CrossRef] [PubMed]

1985 (1)

C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
[CrossRef]

1982 (1)

E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. 18(1), 66–71 (1982).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Andrew, P.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Bachtold, W.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Barnes, W. L.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Bohn, M. J.

M. J. Bohn and J. G. McInerney, “Resonant optical pumping of vertical-cavity surface-emitting lasers,” Opt. Commun. 117(1-2), 111–115 (1995).
[CrossRef]

Bradley, D. D. C.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Caimi, D.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Campoy-Quiles, M.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

Capasso, F.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Cho, A. Y.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Choi, S.

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

Cunningham, B. T.

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[CrossRef] [PubMed]

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[CrossRef]

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

De Martini, F.

F. De Martini and G. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

deMello, J. C.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Dodabalapur, A.

Eden, J. G.

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

Erni, D.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Faist, J.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Farrell, T.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Friend, R. H.

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

Ge, C.

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[CrossRef] [PubMed]

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[CrossRef]

Gmachl, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Gyrtner, C.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Han, M. Y.

Harbers, R.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Hardy, A.

E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. 18(1), 66–71 (1982).
[CrossRef]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Haug, V.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Heeger, A. J.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Heliotis, G.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Henry, C. H.

C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
[CrossRef]

Innocenti, G.

F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[CrossRef] [PubMed]

Jacobovitz, G.

F. De Martini and G. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[CrossRef] [PubMed]

Jian, X.

Jordan, R. H.

Kabra, D.

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

Kapon, E.

E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. 18(1), 66–71 (1982).
[CrossRef]

Karnutsch, C.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Katz, H. E.

Katzir, A.

E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. 18(1), 66–71 (1982).
[CrossRef]

Kazarinov, R. F.

C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Kuwata-Gonokami, M.

Ledochowitsch, P.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Lemmer, U.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Levenson, A.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Logan, R. A.

C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
[CrossRef]

Lu, M.

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[CrossRef] [PubMed]

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[CrossRef]

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

Mahrt, R. F.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Martini, F.

F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[CrossRef] [PubMed]

Mataloni, P.

F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[CrossRef] [PubMed]

McInerney, J. G.

M. J. Bohn and J. G. McInerney, “Resonant optical pumping of vertical-cavity surface-emitting lasers,” Opt. Commun. 117(1-2), 111–115 (1995).
[CrossRef]

Mednick, S. R.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Moll, N.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Moses, D.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Namdas, E. B.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Nehls, B. S.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Offrein, B. J.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Ozawa, S.

Park, B.

Pflumm, C.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Raineri, F.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Raj, R.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Samuel, I. D. W.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Scherf, U.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Schilling, M. L.

Seassal, C.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Slusher, R. E.

Snaith, H. J.

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

Song, M. H.

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

Stavrinou, P. N.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

Strasser, P.

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

Tan, Y.

Tong, M.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Tsutsumi, N.

Turnbull, G. A.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Vecchi, G.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Viktorovitch, P.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Wagner, C. J.

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

Wang, J.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Weimann, T.

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

Wenger, B.

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

Xia, R.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Yacomotti, A. M.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

Yamamoto, M.

Yap, B. K.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

Yen, R.

C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
[CrossRef]

Yuen, J. D.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Zhang, W.

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[CrossRef]

Adv. Funct. Mater. (2)

M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, “Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes,” Adv. Funct. Mater. 19(13), 2130–2136 (2009).
[CrossRef]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[CrossRef]

Adv. Mater. (1)

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005).
[CrossRef]

M. Lu, S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” Appl. Phys. Lett. 92(26), 261502 (2008).
[CrossRef]

C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006).
[CrossRef]

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett. 86(1), 011116 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. H. Henry, R. F. Kazarinov, R. A. Logan, and R. Yen, “Observation of destructive interference in the radiation loss of second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 151–154 (1985).
[CrossRef]

E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. 18(1), 66–71 (1982).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater. 7(5), 376–380 (2008).
[CrossRef] [PubMed]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Opt. Commun. (1)

M. J. Bohn and J. G. McInerney, “Resonant optical pumping of vertical-cavity surface-emitting lasers,” Opt. Commun. 117(1-2), 111–115 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

F. Martini, G. Innocenti, G. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[CrossRef] [PubMed]

F. De Martini and G. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the surface-emitting DFB laser.

Fig. 2
Fig. 2

Photonic band diagram of the DFB laser. (a), resonant mode dispersion calculated using RCWA. Simulation results identify the resonant pumping angle at 9.13° for the excitation mode λ = 532 nm and the vertically emitting mode λ = 584 nm. All angles are measured with respect to the normal of the surface grating in Fig. 1. (b), measured photonic dispersion of the resonant modes. The experimentally obtained data suggests that the pumping light at λ = 532 nm couples to the resonant mode by following the photonic dispersion.

Fig. 3
Fig. 3

Near-field intensity calculation. Electric field intensity profile calculated using RCWA for the TE pumping mode at λ = 532 nm under resonant pumping condition (a), and non-resonant pumping condition (b). Note different colorbar scales are used.

Fig. 4
Fig. 4

A typical above-threshold emission spectrum from the device.

Fig. 5
Fig. 5

Emission characteristics of a surface-emitting DFB laser in terms of the pumping angle. The inset plot depicts the laser pumping threshold and the slope efficiency as a function of the pumping angle. Threshold energies of ~0.34 µJ/mm2, 0.55 µJ/mm2, 3.59 µJ/mm2, and 7.48 µJ/mm2 were found for excitations from 9.13° (on resonance), 9.08° (near resonance), 9.03° (near resonance) and 0° (off resonance), using a linear least-squares fit to the experimentally obtained data. Fitting results indicate a 22 × reduction in the pump threshold energy for lasing when pumped at the resonance angle (9.13°) compared to the case without using resonance (at 0°). Meanwhile, the slope efficiency is enhanced by 23 × at resonance, according to the linear fitting.

Fig. 6
Fig. 6

Absorption efficiency and laser output versus the pumping angle. Both the absorption efficiency of the pumping energy and the laser output peak at the resonant excitation angle (9.13°) and drop in the same manner as the pumping light shifts away from the resonant incident angle. This agreement indicates that it is the increased pumping energy absorption that results in the reduced lasing threshold and the improved slope efficiency.

Metrics