Abstract

We propose the use of kinoform diffractive lenses to focus near infrared femtosecond pulses in sapphire crystals for supercontinuum generation. It is shown that a strongly peaked structure appears in the blue region of the supercontinuum spectra. The central wavelength of this peak can be easily controlled by simply changing the lens-crystal distance. Moreover, when compared with the supercontinuum generated with a refractive lens in analogous conditions, the spectral extension of the so-generated continuum is larger. Our results were corroborated for sapphire plates with different thicknesses as well as in other transparent dielectrics such as fused silica.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [CrossRef]
  2. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).
  3. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
    [CrossRef]
  4. V. I. Klimov and D. W. McBranch, “Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers,” Opt. Lett. 23(4), 277–279 (1998).
    [CrossRef]
  5. Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
    [CrossRef]
  6. M. Reed, M. Steiner-Shepard, M. Armas, and D. Negus, “Microjoule-energy ultrafast optical parametric amplifiers,” J. Opt. Soc. Am. B 12(11), 2229–2236 (1995).
    [CrossRef]
  7. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [CrossRef]
  8. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
    [CrossRef]
  9. Ch. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41(18), 3735–3742 (2002).
    [CrossRef] [PubMed]
  10. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
    [CrossRef] [PubMed]
  11. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23(11), 2317–2322 (2006).
    [CrossRef]
  12. X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
    [CrossRef]
  13. G. Mínguez-Vega, C. Romero, O. Mendoza-Yero, J. R. Vázquez de Aldana, R. Borrego-Varillas, C. Méndez, P. Andrés, J. Lancis, V. Climent, and L. Roso, “Wavelength tuning of femtosecond pulses generated in nonlinear crystals by using diffractive lenses,” Opt. Lett. 35(21), 3694–3696 (2010).
    [CrossRef] [PubMed]
  14. Ch. Yang, K. Shi, H. Li, Q. Xu, V. Gopalan, and Z. Liu, “Chromatic second harmonic imaging,” Opt. Express 18(23), 23837–23843 (2010).
    [CrossRef] [PubMed]
  15. V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
    [CrossRef]
  16. X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77(2-3), 167–170 (2003).
    [CrossRef]

2010 (2)

2009 (2)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[CrossRef]

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

2006 (1)

2004 (1)

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

2003 (3)

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[CrossRef] [PubMed]

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77(2-3), 167–170 (2003).
[CrossRef]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

2002 (1)

1998 (2)

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

V. I. Klimov and D. W. McBranch, “Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers,” Opt. Lett. 23(4), 277–279 (1998).
[CrossRef]

1997 (1)

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

1995 (1)

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Alfano, R. R.

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

AL-Rubaiee, M.

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

Andrés, P.

Armas, M.

Ashcom, J. B.

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[CrossRef]

Borrego-Varillas, R.

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[CrossRef]

Brodeur, A.

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Chen, Y.-H.

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Chin, S. L.

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

Climent, V.

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Fang, X.

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77(2-3), 167–170 (2003).
[CrossRef]

Gattass, R. R.

Gopalan, V.

Jones, T.

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Katona, G.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[CrossRef] [PubMed]

Kawano, H.

Klimov, V. I.

Kobayashi, T.

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77(2-3), 167–170 (2003).
[CrossRef]

Kolesik, M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[CrossRef] [PubMed]

Lancis, J.

Li, H.

Liang, X.

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

Liu, Z.

Mazur, E.

McBranch, D. W.

Méndez, C.

Mendoza-Yero, O.

Midorikawa, K.

Milchberg, H.

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Mínguez-Vega, G.

Moloney, J. V.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[CrossRef] [PubMed]

Moreno, V.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Nagura, Ch.

Negus, D.

Ni, X.

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

Obara, M.

Reed, M.

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[CrossRef]

Román, J. F.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Romero, C.

Roso, L.

Salgueiro, J. R.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Schaffer, C. B.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Shi, K.

Steiner-Shepard, M.

Suda, A.

Ting, A.

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Varma, S.

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Vázquez de Aldana, J. R.

Wang, C.

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

Wilkes, Z.

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Wright, E. M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[CrossRef] [PubMed]

Xu, Q.

Yang, Ch.

Am. J. Phys. (1)

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[CrossRef]

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77(2-3), 167–170 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Ni, C. Wang, X. Liang, M. AL-Rubaiee, and R. R. Alfano, “Fresnel diffraction supercontinuum generation,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1229–1232 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91(4), 043905 (2003).
[CrossRef] [PubMed]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Other (1)

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of the experimental setup. WP, half-wave plate; P, linear polarizer; PM, power meter; BD, beam dump; NF, neutral-density filter; I, iris; DL, kinoform diffractive lens; MS, motorized linear stage; S, sample (sapphire/fused silica); L, fused silica lens; BF, band-pass filter; OF, optical fiber coupler.

Fig. 2
Fig. 2

SC generation in the visible when changing the lens-crystal distance (z), focusing the pump pulse with: (a) the DL (pulse energy of 1.38 μJ); (b) the refractive lens (pulse energy of 0.64 μJ). The colour scale corresponding to both figures represents the normalized intensity in arbitrary linear units. (c) Spectral profiles taken from a) at the z distances indicated in the legend. (d) Pictures of the SC generated at the previous values of z after projecting the light onto a screen.

Fig. 3
Fig. 3

Stability of the average wavelength in the SC generated in a 3 mm sapphire plate, for z = 1.4 mm (blue line) and z = 1.6 mm (green line), and 1.38 μJ pump pulse. Horizontal lines are the arithmetic mean and the standard deviation.

Fig. 4
Fig. 4

Dependence of the SC spectrum generated in a 3 mm thick sapphire crystal with the energy of the incident pulse (the crystal position is fixed to z = 1.4 mm).

Fig. 5
Fig. 5

(a) SC spectra taken when the NA of the incident beam was reduced to 0.026 and the pulse energy was set to 0.98 μJ. The colour scale indicates normalized intensity in arbitrary linear units. (b) Spectral profiles extracted from the previous map for different positions of the crystal (z), indicated in the legend.

Fig. 6
Fig. 6

SC generation in the visible when changing the DL-sample distance, for: (a) 2 mm thick sapphire plate (pulse energy of 1.38 μJ); (b) 1 mm thick sapphire plate (pulse energy of 2.32 μJ); (c) 3 mm thick fused silica plate (pulse energy of 1.74 μJ). The colour scale indicates normalized intensity in arbitrary linear units.

Tables (1)

Tables Icon

Table 1 Energy Thresholds for SC Generation with the DL in Sapphire and Fused Silica

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( λ ) = λ o f o λ

Metrics