Abstract

Clocking smear caused by charge transfer of time delay and integration charge coupled device (TDI CCD) is the natural component in remote imaging sensing system, and it could not be eliminated by traditional motion compensation schemes. After researching on the operation of a typical three phase TDI CCD, we give a thorough understanding on causes of clocking smear. Then an elaborate mathematical model describing the charge transfer procedure is developed, and the modulation transfer function (MTF) losses due to charge transfer is also presented, which shows that nearly one pixel smear will be introduced by traditional phase timing. Therefore we propose a novel charge transfer method, using which only 1/2ϕ pixel smear will occur within the imaging operation of a single TDI stage, where ϕ represents the number of timing phases. Finally, a series of image simulations are made for two, three and four phase TDI CCD in which clocking smear is caused by our and conventional charge transfer methods respectively. The experimental results confirm that image quality improvement can be achieved by our method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Bastian and M. Biermann, “Astrometric meaning and interpretation of high-precision time delay integration CCD data,” Astron. Astrophys. 438(2), 745–755 (2005).
    [CrossRef]
  2. G. Hochman, Y. Yitzhaky, N. S. Kopeika, Y. Lauber, M. Citroen, and A. Stern, “Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations,” Appl. Opt. 43(22), 4345–4354 (2004).
    [CrossRef] [PubMed]
  3. M. Iyenqar and D. Lange, “The Goodrich 3th generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 1–12 (2006).
  4. A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaiin, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18(8), 8311–8331 (2010).
    [CrossRef] [PubMed]
  5. X. Zhang, “China’s 2nd lunar probe Chang’e-2 blasts off,” (English.xinhuanet.com, 2010) http://news.xinhuanet.com/english2010/sci/2010-10/01/c_13539035 .
  6. J. R. Jensen and D. C. Cowen, “Remote sensing of unban/suburban infrastructure and Socio-Economic Attributes,” Photogramm. Eng. Remote Sensing 65(5), 611–622 (1999).
  7. J. L. Tong, M. Aydin, and H. E. Bedell, “Direction and extent of perceived motion smear during pursuit eye movement,” Vision Res. 47(7), 1011–1019 (2007).
    [CrossRef] [PubMed]
  8. R. D. Fiete and T. Tantalo, “Image quality of increased along-scan sampling for remote sensing systems,” Opt. Eng. 38(5), 815–820 (1999).
    [CrossRef]
  9. R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40(4), 574–585 (2001).
    [CrossRef]
  10. S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
    [CrossRef]
  11. S. G. Chamberlain and W. D. Washkurak, “High-speed, low-noise, fine-resolution TDI CCD imagers,” Proc. SPIE 1242, 1–12 (1990).
  12. T. B. Ma, Y. F. Guo, and Y. F. Li, “Precision of row frequency of scientific grade TDI CCD camera,” Opt. Precis. Eng. 18(9), 2028–2035 (2010).
  13. G. C. Holst, Electro-optical imaging system performance (SPIE Optical Engineering Press, 2008).
  14. S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).
  15. G. C. Holst, CMOS/CCD sensor and camera system (SPIE Optical Engineering Press, 2007).
  16. J. R. Janesick, Scientific charge-coupled devices (SPIE Optical Engineering Press, 2000).
  17. G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994).
    [CrossRef]
  18. G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46(10), 1–8 (2007).
    [CrossRef]
  19. P. X. Silveira and R. Narayanswamy, “Signal-to-noise analysis of task-based imaging systems with defocus,” Appl. Opt. 45(13), 2924–2934 (2006).
    [CrossRef] [PubMed]
  20. W. J. Smith, Modern optical engineering (The McGraw-Hill Companies, Inc, 2008).
  21. R. D. Fiete, “Image quality and λFN/p for remote sensing systems,” Opt. Eng. 38(7), 1229–1240 (1999).
    [CrossRef]

2010

2009

S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).

2007

G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46(10), 1–8 (2007).
[CrossRef]

J. L. Tong, M. Aydin, and H. E. Bedell, “Direction and extent of perceived motion smear during pursuit eye movement,” Vision Res. 47(7), 1011–1019 (2007).
[CrossRef] [PubMed]

2006

P. X. Silveira and R. Narayanswamy, “Signal-to-noise analysis of task-based imaging systems with defocus,” Appl. Opt. 45(13), 2924–2934 (2006).
[CrossRef] [PubMed]

M. Iyenqar and D. Lange, “The Goodrich 3th generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 1–12 (2006).

2005

U. Bastian and M. Biermann, “Astrometric meaning and interpretation of high-precision time delay integration CCD data,” Astron. Astrophys. 438(2), 745–755 (2005).
[CrossRef]

2004

2001

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40(4), 574–585 (2001).
[CrossRef]

1999

S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
[CrossRef]

R. D. Fiete and T. Tantalo, “Image quality of increased along-scan sampling for remote sensing systems,” Opt. Eng. 38(5), 815–820 (1999).
[CrossRef]

J. R. Jensen and D. C. Cowen, “Remote sensing of unban/suburban infrastructure and Socio-Economic Attributes,” Photogramm. Eng. Remote Sensing 65(5), 611–622 (1999).

R. D. Fiete, “Image quality and λFN/p for remote sensing systems,” Opt. Eng. 38(7), 1229–1240 (1999).
[CrossRef]

1994

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994).
[CrossRef]

1990

S. G. Chamberlain and W. D. Washkurak, “High-speed, low-noise, fine-resolution TDI CCD imagers,” Proc. SPIE 1242, 1–12 (1990).

Aydin, M.

J. L. Tong, M. Aydin, and H. E. Bedell, “Direction and extent of perceived motion smear during pursuit eye movement,” Vision Res. 47(7), 1011–1019 (2007).
[CrossRef] [PubMed]

Bastian, U.

U. Bastian and M. Biermann, “Astrometric meaning and interpretation of high-precision time delay integration CCD data,” Astron. Astrophys. 438(2), 745–755 (2005).
[CrossRef]

Bedell, H. E.

J. L. Tong, M. Aydin, and H. E. Bedell, “Direction and extent of perceived motion smear during pursuit eye movement,” Vision Res. 47(7), 1011–1019 (2007).
[CrossRef] [PubMed]

Biermann, M.

U. Bastian and M. Biermann, “Astrometric meaning and interpretation of high-precision time delay integration CCD data,” Astron. Astrophys. 438(2), 745–755 (2005).
[CrossRef]

Brachet, F.

Bréon, F. M.

Casteras, C.

Chamberlain, S. G.

S. G. Chamberlain and W. D. Washkurak, “High-speed, low-noise, fine-resolution TDI CCD imagers,” Proc. SPIE 1242, 1–12 (1990).

Citroen, M.

Cota, S. A.

S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).

Cowen, D. C.

J. R. Jensen and D. C. Cowen, “Remote sensing of unban/suburban infrastructure and Socio-Economic Attributes,” Photogramm. Eng. Remote Sensing 65(5), 611–622 (1999).

Duvall, D. J.

S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).

Etcheto, P.

Fiete, R. D.

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40(4), 574–585 (2001).
[CrossRef]

R. D. Fiete and T. Tantalo, “Image quality of increased along-scan sampling for remote sensing systems,” Opt. Eng. 38(5), 815–820 (1999).
[CrossRef]

S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
[CrossRef]

R. D. Fiete, “Image quality and λFN/p for remote sensing systems,” Opt. Eng. 38(7), 1229–1240 (1999).
[CrossRef]

Florio, C. J.

S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).

Guo, Y. F.

T. B. Ma, Y. F. Guo, and Y. F. Li, “Precision of row frequency of scientific grade TDI CCD camera,” Opt. Precis. Eng. 18(9), 2028–2035 (2010).

Healey, G. E.

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994).
[CrossRef]

Hochman, G.

Holst, G. C.

G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46(10), 1–8 (2007).
[CrossRef]

Iyenqar, M.

M. Iyenqar and D. Lange, “The Goodrich 3th generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 1–12 (2006).

Jensen, J. R.

J. R. Jensen and D. C. Cowen, “Remote sensing of unban/suburban infrastructure and Socio-Economic Attributes,” Photogramm. Eng. Remote Sensing 65(5), 611–622 (1999).

Kondepudy, R.

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994).
[CrossRef]

Kopeika, N. S.

Lacan, A.

Lange, D.

M. Iyenqar and D. Lange, “The Goodrich 3th generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 1–12 (2006).

Lauber, Y.

Leon, M. A.

S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).

Li, Y. F.

T. B. Ma, Y. F. Guo, and Y. F. Li, “Precision of row frequency of scientific grade TDI CCD camera,” Opt. Precis. Eng. 18(9), 2028–2035 (2010).

Ma, T. B.

T. B. Ma, Y. F. Guo, and Y. F. Li, “Precision of row frequency of scientific grade TDI CCD camera,” Opt. Precis. Eng. 18(9), 2028–2035 (2010).

Mooney, J.

S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
[CrossRef]

Narayanswamy, R.

Rosak, A.

Roucayrol, L.

Salaiin, Y.

Silveira, P. X.

Smith, S. L.

S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
[CrossRef]

Stern, A.

Tantalo, T.

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40(4), 574–585 (2001).
[CrossRef]

R. D. Fiete and T. Tantalo, “Image quality of increased along-scan sampling for remote sensing systems,” Opt. Eng. 38(5), 815–820 (1999).
[CrossRef]

Tantalo, T. A.

S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
[CrossRef]

Tong, J. L.

J. L. Tong, M. Aydin, and H. E. Bedell, “Direction and extent of perceived motion smear during pursuit eye movement,” Vision Res. 47(7), 1011–1019 (2007).
[CrossRef] [PubMed]

Washkurak, W. D.

S. G. Chamberlain and W. D. Washkurak, “High-speed, low-noise, fine-resolution TDI CCD imagers,” Proc. SPIE 1242, 1–12 (1990).

Yitzhaky, Y.

Appl. Opt.

Astron. Astrophys.

U. Bastian and M. Biermann, “Astrometric meaning and interpretation of high-precision time delay integration CCD data,” Astron. Astrophys. 438(2), 745–755 (2005).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 267–276 (1994).
[CrossRef]

Opt. Eng.

G. C. Holst, “Imaging system performance based upon Fλ/d,” Opt. Eng. 46(10), 1–8 (2007).
[CrossRef]

R. D. Fiete and T. Tantalo, “Image quality of increased along-scan sampling for remote sensing systems,” Opt. Eng. 38(5), 815–820 (1999).
[CrossRef]

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40(4), 574–585 (2001).
[CrossRef]

S. L. Smith, J. Mooney, T. A. Tantalo, and R. D. Fiete, “Understanding image quality losses due to smear in high resolution remote sensing imaging system,” Opt. Eng. 38(5), 821–826 (1999).
[CrossRef]

R. D. Fiete, “Image quality and λFN/p for remote sensing systems,” Opt. Eng. 38(7), 1229–1240 (1999).
[CrossRef]

Opt. Express

Opt. Precis. Eng.

T. B. Ma, Y. F. Guo, and Y. F. Li, “Precision of row frequency of scientific grade TDI CCD camera,” Opt. Precis. Eng. 18(9), 2028–2035 (2010).

Photogramm. Eng. Remote Sensing

J. R. Jensen and D. C. Cowen, “Remote sensing of unban/suburban infrastructure and Socio-Economic Attributes,” Photogramm. Eng. Remote Sensing 65(5), 611–622 (1999).

Proc. SPIE

S. A. Cota, C. J. Florio, D. J. Duvall, and M. A. Leon, “The use of general image quality equation in the design and evaluation of imaging systems,” Proc. SPIE 7458, 1–20 (2009).

M. Iyenqar and D. Lange, “The Goodrich 3th generation DB-110 system: operational on tactical and unmanned aircraft,” Proc. SPIE 6209, 1–12 (2006).

S. G. Chamberlain and W. D. Washkurak, “High-speed, low-noise, fine-resolution TDI CCD imagers,” Proc. SPIE 1242, 1–12 (1990).

Vision Res.

J. L. Tong, M. Aydin, and H. E. Bedell, “Direction and extent of perceived motion smear during pursuit eye movement,” Vision Res. 47(7), 1011–1019 (2007).
[CrossRef] [PubMed]

Other

G. C. Holst, Electro-optical imaging system performance (SPIE Optical Engineering Press, 2008).

G. C. Holst, CMOS/CCD sensor and camera system (SPIE Optical Engineering Press, 2007).

J. R. Janesick, Scientific charge-coupled devices (SPIE Optical Engineering Press, 2000).

X. Zhang, “China’s 2nd lunar probe Chang’e-2 blasts off,” (English.xinhuanet.com, 2010) http://news.xinhuanet.com/english2010/sci/2010-10/01/c_13539035 .

W. J. Smith, Modern optical engineering (The McGraw-Hill Companies, Inc, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical structure of a TDI CCD.

Fig. 2
Fig. 2

Bucket analogy for describing TDI CCD operation procedure by traditional phase timing.

Fig. 3
Fig. 3

Block diagram of traditional charge transfer. (a)Charge transfer procedure in a line period, it seems like that one collecting bucket moves 1/6 pixel at the transition moment from one charge transfer step to another; (b) Timing diagram of the three phase TDI CCD.

Fig. 4
Fig. 4

Photosensitive pixel and image point movement in one line period for a four phase TDI CCD. (a) Velocity comparison between photosensitive pixel and image point. (b) Displacement comparison between photosensitive pixel and image.

Fig. 5
Fig. 5

MTF losses due to traditional timing for two, three and four phase TDI CCD, also of MTF losses due to one pixel smear is given for comparison.

Fig. 6
Fig. 6

Bucket analogy for describing TDI CCD operation procedure by our phase timing.

Fig. 7
Fig. 7

Block diagram of our charge transfer method. (a) The process of charge transfer procedure in one line period; (b) Timing diagram of the new charge transfer method.

Fig. 8
Fig. 8

MTF degradation caused by new phase timing for two, three and four phase TDI CCD.

Fig. 9
Fig. 9

Structure of the experimental platform.

Fig. 10
Fig. 10

The amplitude of MTF by traditional and our phase timing at spatial frequency of 0.5cycles/pixel for the modeled TDI CCD camera.

Fig. 11
Fig. 11

Image simulations for two, three, and four phase TDI CCD by conventional and proposed phase timing, and charge transfer occurs in horizontal direction (a) conventional two phase timing, (b) conventional three phase timing, (c)conventional four phase timing, (d)proposed two phase timing, (e) proposed three phase timing, (f)proposed four phase timing.

Tables (2)

Tables Icon

Table 1 Pixel Smear Caused by Traditional Phase Timing in Every Charge Transfer Step

Tables Icon

Table 2 Pixel Smear Caused by New Phase Timing in Every Charge Transfer Step

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

V p i x e l _ c l o c k = b T
V i m a g e _ s c a n = V H f
b 2 ϕ = + V c h arg e ( t ) d t , V c h arg e ( t ) = 0 , ( t 0 )
V c h arg e ( t ) = b 2 ϕ Δ t
V p i x e l _ c l o c k = i = 1 2 ϕ V c h arg e ( t t ( i ) )
I ' ( x , y ) = I ( x , y ) * T N l r e c t ( x l )
l 1 = T ( 1 ) T b
I 1 ' ( x , y ) = I ( x , y ) * 1 b r e c t ( x l 1 )
I 2 ' ( x , y ) = I ( x l 1 + b 2 ϕ , y ) * 1 b r e c t ( x l 2 )
I n ' ( x , y ) = I ( x i = 1 n 1 l i + ( n 1 ) b 2 ϕ , y ) * 1 b r e c t ( x l n )
I ' ( x , y ) = i = 1 2 ϕ I i ' ( x , y ) = 1 b i = 1 2 ϕ ( I ( x j = 1 i 1 l j + ( i 1 ) b 2 ϕ , y ) * r e c t ( x l i ) )
I ' ( f x , f y ) = I ( f x , f y ) b i = 1 2 ϕ ( l i sin c ( π l i f x ) e j 2 π ( j = 1 i l j ( i 1 ) b 2 ϕ ) f x )
M T F = 1 b i = 1 2 ϕ ( l i sin c ( π l i f x ) e j 2 π ( j = 1 i l j ( i 1 ) b 2 ϕ ) f x )
D T arg e t f C o l lim a t o r = D Im a g e f C a m e r a

Metrics